Search results
Results from the WOW.Com Content Network
In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.
If angle C is obtuse then for sides a, b, and c we have [4]: p.1, #74 < + <, with the left inequality approaching equality in the limit only as the apex angle of an isosceles triangle approaches 180°, and with the right inequality approaching equality only as the obtuse angle approaches 90°.
A triangle in which one of the angles is a right angle is a right triangle, a triangle in which all of its angles are less than that angle is an acute triangle, and a triangle in which one of it angles is greater than that angle is an obtuse triangle. [8] These definitions date back at least to Euclid. [9]
25 Geometry and other areas of mathematics. 26 Glyphs and symbols. 27 Table of all the Shapes. ... Equilateral triangle; Isosceles triangle; Obtuse triangle; Rational ...
Obtuse may refer to: Obtuse angle, an angle of between 90 and 180 degrees; Obtuse triangle, a triangle with an internal angle of between 90 and 180 degrees; Obtuse leaf shape; Obtuse tepal shape; Obtuse barracuda, a ray-finned fish; Obtuse, a neighborhood in Brookfield, Connecticut
The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
For acute triangles, the feet of the altitudes all fall on the triangle's sides (not extended). In an obtuse triangle (one with an obtuse angle), the foot of the altitude to the obtuse-angled vertex falls in the interior of the opposite side, but the feet of the altitudes to the acute-angled vertices fall on the opposite extended side, exterior ...