enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 3-dimensional matching - Wikipedia

    en.wikipedia.org/wiki/3-dimensional_matching

    3-dimensional matchings. (a) Input T. (b)–(c) Solutions. In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching (also known as 2-dimensional matching) to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices (instead of edges containing 2 vertices in a usual graph).

  3. Cayley's nodal cubic surface - Wikipedia

    en.wikipedia.org/wiki/Cayley's_nodal_cubic_surface

    This contracts the 4 sides of the complete quadrilateral to the 4 nodes of the Cayley surface, while blowing up its 6 vertices to the lines through two of them. The surface is a section through the Segre cubic. [1] The surface contains nine lines, 11 tritangents and no double-sixes. [1] A number of affine forms of the surface have been presented.

  4. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    In some literature, the term complete matching is used. In the above figure, only part (b) shows a perfect matching. A perfect matching is also a minimum-size edge cover. Thus, the size of a maximum matching is no larger than the size of a minimum edge cover: ⁠ () ⁠. A graph can only contain a perfect matching when the graph has an even ...

  5. Cubic surface - Wikipedia

    en.wikipedia.org/wiki/Cubic_surface

    In mathematics, a cubic surface is a surface in 3-dimensional space defined by one polynomial equation of degree 3. Cubic surfaces are fundamental examples in algebraic geometry . The theory is simplified by working in projective space rather than affine space , and so cubic surfaces are generally considered in projective 3-space P 3 ...

  6. Numerical 3-dimensional matching - Wikipedia

    en.wikipedia.org/wiki/Numerical_3-dimensional...

    Numerical 3-dimensional matching is an NP-complete decision problem. It is given by three multisets of integers, and , each containing elements, and a bound .The goal is to select a subset of such that every integer in , and occurs exactly once and that for every triple (,,) in the subset + + = holds.

  7. Catmull–Clark subdivision surface - Wikipedia

    en.wikipedia.org/wiki/Catmull–Clark_subdivision...

    The Catmull–Clark algorithm is a technique used in 3D computer graphics to create curved surfaces by using subdivision surface modeling. It was devised by Edwin Catmull and Jim Clark in 1978 as a generalization of bi-cubic uniform B-spline surfaces to arbitrary topology. [1]

  8. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    This familiar equation for a plane is called the general form of the equation of the plane or just the plane equation. [6] Thus for example a regression equation of the form y = d + ax + cz (with b = −1) establishes a best-fit plane in three-dimensional space when there are two explanatory variables.

  9. Marching cubes - Wikipedia

    en.wikipedia.org/wiki/Marching_cubes

    Head and cerebral structures (hidden) extracted from 150 MRI slices using marching cubes (about 150,000 triangles). Marching cubes is a computer graphics algorithm, published in the 1987 SIGGRAPH proceedings by Lorensen and Cline, [1] for extracting a polygonal mesh of an isosurface from a three-dimensional discrete scalar field (the elements of which are sometimes called voxels).