enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    If photons were not purely massless, their speeds would vary with frequency, with lower-energy (redder) photons moving slightly slower than higher-energy photons. Relativity would be unaffected by this; the so-called speed of light, c , would then not be the actual speed at which light moves, but a constant of nature which is the upper bound on ...

  3. Neutrino - Wikipedia

    en.wikipedia.org/wiki/Neutrino

    The neutrino [a] was postulated first by Wolfgang Pauli in 1930 to explain how beta decay could conserve energy, momentum, and angular momentum ().In contrast to Niels Bohr, who proposed a statistical version of the conservation laws to explain the observed continuous energy spectra in beta decay, Pauli hypothesized an undetected particle that he called a "neutron", using the same -on ending ...

  4. Invariant mass - Wikipedia

    en.wikipedia.org/wiki/Invariant_mass

    Similarly, the total energy of the system is its total (relativistic) mass times the speed of light squared. Systems whose four-momentum is a null vector (for example, a single photon or many photons moving in exactly the same direction) have zero invariant mass and are referred to as massless.

  5. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    Photons are massless particles of definite energy, definite momentum, and definite spin. To explain the photoelectric effect, Albert Einstein assumed heuristically in 1905 that an electromagnetic field consists of particles of energy of amount hν, where h is the Planck constant and ν is the wave frequency.

  6. Matter creation - Wikipedia

    en.wikipedia.org/wiki/Matter_creation

    To create an electron-positron pair, the total energy of the photons, in the rest frame, must be at least 2m e c 2 = 2 × 0.511 MeV = 1.022 MeV (m e is the mass of one electron and c is the speed of light in vacuum), an energy value that corresponds to soft gamma ray photons.

  7. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.

  8. High-energy cosmic neutrino detected under Mediterranean Sea

    www.aol.com/news/high-energy-cosmic-neutrino...

    One called ARCA - 3,450 meters (2.1 miles) deep near Sicily - is designed to find high-energy neutrinos. One called ORCA - 2,450 meters (1.5 miles) deep near Provence, France - is designed to ...

  9. Massless particle - Wikipedia

    en.wikipedia.org/wiki/Massless_particle

    The graviton is a hypothetical tensor boson proposed to be the carrier of gravitational force in some quantum theories of gravity, but no such theory has been successfully incorporated into the Standard Model, so the Standard Model neither predicts any such particle nor requires it, and no gravitational quantum particle has been indicated by experiment.