Search results
Results from the WOW.Com Content Network
Ferroelectricity: A state of matter with spontaneous electric polarization. Antiferroelectricity: A state of matter in which the adjacent electric dipoles point in opposite directions. Charge ordering; Charge density wave: An ordered state in which charge density is periodically modulated.
The concept that matter behaves like a wave was proposed by French physicist Louis de Broglie (/ d ə ˈ b r ɔɪ /) in 1924, and so matter waves are also known as de Broglie waves. The de Broglie wavelength is the wavelength , λ , associated with a particle with momentum p through the Planck constant , h : λ = h p . {\displaystyle \lambda ...
Forms of matter that are not composed of molecules and are organized by different forces can also be considered different states of matter. Superfluids (like Fermionic condensate) and the quark–gluon plasma are examples. In a chemical equation, the state of matter of the chemicals may be shown as (s) for solid, (l) for liquid, and (g) for gas.
Wave properties may refer to: Physical properties of waves : transmission, reflection, polarization, diffraction, refraction and others Mathematical description of waves : amplitude, frequency, wavelength, and others
At one point, when the overlap becomes significant, a macroscopic number of particles condense into the ground state. In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero, i.e., 0 K (−273.15 ...
State functions represent quantities or properties of a thermodynamic system, while non-state functions represent a process during which the state functions change. For example, the state function PV is proportional to the internal energy of an ideal gas, but the work W is the amount of energy transferred as the system performs work. Internal ...
Matter waves were first proposed by Louis de Broglie and are sometimes called de Broglie waves. They form a key aspect of wave–particle duality and experiments have since supported the idea. The wave associated with a particle of a given mass, such as an atom , has a defined frequency , and a change in the duration of one cycle from peak to ...
Functions of this form are known as Bloch functions or Bloch states, and serve as a suitable basis for the wave functions or states of electrons in crystalline solids. The description of electrons in terms of Bloch functions, termed Bloch electrons (or less often Bloch Waves ), underlies the concept of electronic band structures .