enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank of a group - Wikipedia

    en.wikipedia.org/wiki/Rank_of_a_group

    The rank of a symmetry group is closely related to the complexity of the object (a molecule, a crystal structure) being under the action of the group. If G is a crystallographic point group, then rank(G) is up to 3. [9] If G is a wallpaper group, then rank(G) = 2 to 4. The only wallpaper-group type of rank 4 is p2mm. [10]

  3. Free group - Wikipedia

    en.wikipedia.org/wiki/Free_group

    ) free group of rank at least 2 has subgroups of all countable ranks. The commutator subgroup of a free group of rank k > 1 has infinite rank; for example for F(a,b), it is freely generated by the commutators [a m, b n] for non-zero m and n. The free group in two elements is SQ universal; the above follows as any SQ universal group has ...

  4. Grushko theorem - Wikipedia

    en.wikipedia.org/wiki/Grushko_theorem

    In the mathematical subject of group theory, the Grushko theorem or the Grushko–Neumann theorem is a theorem stating that the rank (that is, the smallest cardinality of a generating set) of a free product of two groups is equal to the sum of the ranks of the two free factors.

  5. Group theory - Wikipedia

    en.wikipedia.org/wiki/Group_theory

    Group theory has three main historical sources: number theory, the theory of algebraic equations, and geometry.The number-theoretic strand was begun by Leonhard Euler, and developed by Gauss's work on modular arithmetic and additive and multiplicative groups related to quadratic fields.

  6. Hanna Neumann conjecture - Wikipedia

    en.wikipedia.org/wiki/Hanna_Neumann_conjecture

    rank(L) − 1 ≤ (rank(H) − 1)(rank(K) − 1). Here for a group G the quantity rank(G) is the rank of G, that is, the smallest size of a generating set for G. Every subgroup of a free group is known to be free itself and the rank of a free group is equal to the size of any free basis of that free group.

  7. Glossary of group theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_group_theory

    The group consists of the finite strings (words) that can be composed by elements from A, together with other elements that are necessary to form a group. Multiplication of strings is defined by concatenation, for instance (abb) • (bca) = abbbca. Every group (G, •) is basically a factor group of a free group generated by G.

  8. Special unitary group - Wikipedia

    en.wikipedia.org/wiki/Special_unitary_group

    For a field F, the generalized special unitary group over F, SU(p, q; F), is the group of all linear transformations of determinant 1 of a vector space of rank n = p + q over F which leave invariant a nondegenerate, Hermitian form of signature (p, q). This group is often referred to as the special unitary group of signature p q over F.

  9. Orthogonal group - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_group

    The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of n × n orthogonal matrices , where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose ).