Search results
Results from the WOW.Com Content Network
The resulting nitrilium ion is hydrolyzed to the desired amide. Primary, [7] secondary, [4] tertiary, [8] and benzylic [9] alcohols, [1] as well as tert-butyl acetate, [10] also successfully react with nitriles in the presence of strong acids to form amides via the Ritter reaction. A wide range of nitriles can be used.
With ammonia or an amine to form an amidine (di-nitriles may form imidines, for instance succinimidine from succinonitrile) [7] With water to form an ester; With hydrogen sulfide to form a thionoester; Commonly, the Pinner salt itself is not isolated, with the reaction being continued to give the desired functional group (orthoester etc.) in ...
Reaction of the nitrile with alcohol in the presence of acid gives an iminoether. Treatment of the resulting compound with ammonia then completes the conversion to the amidine. [ 1 ] Instead of using a Bronsted acid , Lewis acids such as aluminium trichloride promote the direct amination of nitriles , [ 2 ] or, in certain exceptional cases, of ...
The reaction generates a nitrile and a carbocation, which is quickly intercepted to form a variety of products. The nitrile can also be hydrolyzed under reaction conditions to give carboxylic acids. Different reaction conditions can favor the fragmentation over the rearrangement.
The structure of a nitrile: the functional group is highlighted blue. In organic chemistry, a nitrile is any organic compound that has a −C≡N functional group.The name of the compound is composed of a base, which includes the carbon of the −C≡N, suffixed with "nitrile", so for example CH 3 CH 2 C≡N is called "propionitrile" (or propanenitrile). [1]
Nitrile hydratase and amidase are two hydrating and hydrolytic enzymes responsible for the sequential metabolism of nitriles in bacteria that are capable of utilising nitriles as their sole source of nitrogen and carbon, and in concert act as an alternative to nitrilase activity, which performs nitrile hydrolysis without formation of an intermediate primary amide.
In organic chemistry, the Schmidt reaction is an organic reaction in which an azide reacts with a carbonyl derivative, usually an aldehyde, ketone, or carboxylic acid, under acidic conditions to give an amine or amide, with expulsion of nitrogen.
Nitrilase was first discovered in the early 1960s for its ability to catalyze the hydration of a nitrile to a carboxylic acid. [2] Although it was known at the time that nitrilase could operate with wide substrate specificity in producing the corresponding acid, later studies reported the first NHase (nitrile hydratase) activity exhibited by nitrilase.