Search results
Results from the WOW.Com Content Network
In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable.It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or various data structures such as lists, arrays, bit vectors, and strings.
Unlike the bitset in C++, the Java BitSet does not have a "size" state (it has an effectively infinite size, initialized with 0 bits); a bit can be set or tested at any index. In addition, there is a class EnumSet, which represents a Set of values of an enumerated type internally as a bit vector, as a safer alternative to bit fields.
There are 2 n+1 symmetric n-ary Boolean functions. Instead of the truth table, traditionally used to represent Boolean functions, one may use a more compact representation for an n-variable symmetric Boolean function: the (n + 1)-vector, whose i-th entry (i = 0, ..., n) is the value of the function on an input vector with i ones.
The solver can be built using Visual Studio, a makefile or using CMake and runs on Windows, FreeBSD, Linux, and macOS. The default input format for Z3 is SMTLIB2. It also has officially supported bindings for several programming languages, including C, C++, Python, .NET, Java, and OCaml. [5]
A comparison of 5 clipping libraries at rogue-modron.blogspot.com; A commercial library for 3D Boolean operations: sgCore C++/C# library. The comp.graphics.algorithms FAQ, solutions to mathematical problems with 2D and 3D Polygons. Matthias Kramm's gfxpoly, a free C library for 2D polygons (BSD license).
A variant of the 3-satisfiability problem is the one-in-three 3-SAT (also known variously as 1-in-3-SAT and exactly-1 3-SAT). Given a conjunctive normal form with three literals per clause, the problem is to determine whether there exists a truth assignment to the variables so that each clause has exactly one TRUE literal (and thus exactly two ...
The cross product operation is an example of a vector rank function because it operates on vectors, not scalars. Matrix multiplication is an example of a 2-rank function, because it operates on 2-dimensional objects (matrices). Collapse operators reduce the dimensionality of an input data array by one or more dimensions. For example, summing ...
For example, given the Boolean expression: = () will become: = () (), with ,,, …, being all distinct variables. This relaxes the problem by introducing new variables into the Boolean expression, [4] which has the effect of removing many of the constraints in the expression.