Search results
Results from the WOW.Com Content Network
An indirect branch (also known as a computed jump, indirect jump and register-indirect jump) is a type of program control instruction present in some machine language instruction sets. Rather than specifying the address of the next instruction to execute , as in a direct branch , the argument specifies where the address is located.
Next, up to 63 word arguments may be placed on the stack. The caller then adds the number of arguments to the MARK opcode and pushes that result on the stack. The value of SP is copied to R5. Finally, a JSR PC,address is executed to call the subroutine. After executing its code, the subroutine terminates with an RTS R5. This loads the value in ...
jsr_w † c9 1100 1001 4: branchbyte1, branchbyte2, branchbyte3, branchbyte4 → address jump to subroutine at branchoffset (signed int constructed from unsigned bytes branchbyte1 << 24 | branchbyte2 << 16 | branchbyte3 << 8 | branchbyte4) and place the return address on the stack l2d 8a 1000 1010 value → result convert a long to a double l2f 89
A built-in function, or builtin function, or intrinsic function, is a function for which the compiler generates code at compile time or provides in a way other than for other functions. [23] A built-in function does not need to be defined like other functions since it is built in to the programming language. [24]
The trampoline is a small piece of code which is constructed on the fly on the stack when the address of a nested function is taken. The trampoline sets up the static link pointer, which allows the nested function to access local variables of the enclosing function. The function pointer is then simply the address of the trampoline.
Examples of, and arguments for, Jump Tables via Function Pointer Arrays in C/C++; Example code generated by 'Switch/Case' branch table in C, versus IF/ELSE. Example code generated for array indexing if structure size is divisible by powers of 2 or otherwise. "Arrays of Pointers to Functions" by Nigel Jones
When executing JSR (jump to subroutine) and RTS (return from subroutine) instructions, the return address pushed to the stack by JSR is that of the last byte of the JSR operand (that is, the most significant byte of the subroutine address), rather than the address of the following instruction.
The generated code thus needs to make sure that the call frame for A is properly set up before jumping to the tail-called subroutine. For instance, on platforms where the call stack does not just contain the return address , but also the parameters for the subroutine, the compiler may need to emit instructions to adjust the call stack.