enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unary operation - Wikipedia

    en.wikipedia.org/wiki/Unary_operation

    In mathematics, a unary operation is an operation with only one operand, i.e. a single input. [1] This is in contrast to binary operations , which use two operands. [ 2 ] An example is any function ⁠ f : A → A {\displaystyle f:A\rightarrow A} ⁠ , where A is a set ; the function ⁠ f {\displaystyle f} ⁠ is a unary operation on A .

  3. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    In mathematics, the factorial of a non-negative integer, denoted by !, is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = =

  4. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    [2] [3] Thus, in the expression 1 + 2 × 3, the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7, and not (1 + 2) × 3 = 9. When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of ...

  5. Bhargava factorial - Wikipedia

    en.wikipedia.org/wiki/Bhargava_factorial

    The factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example, 5! = 5×4×3×2×1 = 120. By convention, the value of 0! is defined as 1. This classical factorial function appears prominently in many theorems in number theory. The following are a few of these theorems. [1]

  6. Smalltalk - Wikipedia

    en.wikipedia.org/wiki/Smalltalk

    which sends "factorial" to 3, then "factorial" to the result (6), then "log" to the result (720), producing the result 2.85733. A series of expressions can be written as in the following (hypothetical) example, each separated by a period (period is a statement separator, not a statement terminator).

  7. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    In this article, the symbol () is used to represent the falling factorial, and the symbol () is used for the rising factorial. These conventions are used in combinatorics , [ 4 ] although Knuth 's underline and overline notations x n _ {\displaystyle x^{\underline {n}}} and x n ¯ {\displaystyle x^{\overline {n}}} are increasingly popular.

  8. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, M ( n ) {\displaystyle M(n)} below stands in for the complexity of the chosen multiplication algorithm.

  9. Triple bar - Wikipedia

    en.wikipedia.org/wiki/Triple_bar

    The triple bar character in Unicode is code point U+2261 ≡ IDENTICAL TO (≡, ≡). [1] The closely related code point U+2262 ≢ NOT IDENTICAL TO (≢, ≢) is the same symbol with a slash through it, indicating the negation of its mathematical meaning.