enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Duplication and elimination matrices - Wikipedia

    en.wikipedia.org/wiki/Duplication_and...

    In mathematics, especially in linear algebra and matrix theory, the duplication matrix and the elimination matrix are linear transformations used for transforming half-vectorizations of matrices into vectorizations or (respectively) vice versa.

  3. Compound matrix - Wikipedia

    en.wikipedia.org/wiki/Compound_matrix

    Let A be an m × n matrix with real or complex entries. [a] If I is a subset of size r of {1, ..., m} and J is a subset of size s of {1, ..., n}, then the (I, J )-submatrix of A, written A I, J , is the submatrix formed from A by retaining only those rows indexed by I and those columns indexed by J.

  4. Balanced matrix - Wikipedia

    en.wikipedia.org/wiki/Balanced_matrix

    Equivalently, a matrix is totally balanced if and only if it does not contain a submatrix that is the incidence matrix of any cycle (no matter if of odd or even order). This characterization immediately implies that any totally balanced matrix is balanced. [3] Moreover, any 0-1 matrix that is totally unimodular is also balanced. The following ...

  5. Sylvester's formula - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_formula

    In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. [1] [2] It states that [3]

  6. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. [3] [4] Computing matrix products is a central operation in all computational applications of linear algebra.

  7. Logarithm of a matrix - Wikipedia

    en.wikipedia.org/wiki/Logarithm_of_a_matrix

    The exponential of a matrix A is defined by =!. Given a matrix B, another matrix A is said to be a matrix logarithm of B if e A = B.. Because the exponential function is not bijective for complex numbers (e.g. = =), numbers can have multiple complex logarithms, and as a consequence of this, some matrices may have more than one logarithm, as explained below.

  8. Unimodular matrix - Wikipedia

    en.wikipedia.org/wiki/Unimodular_matrix

    In mathematics, a unimodular matrix M is a square integer matrix having determinant +1 or −1. Equivalently, it is an integer matrix that is invertible over the integers : there is an integer matrix N that is its inverse (these are equivalent under Cramer's rule ).

  9. Matrix difference equation - Wikipedia

    en.wikipedia.org/wiki/Matrix_difference_equation

    A matrix difference equation is a difference equation in which the value of a vector (or sometimes, a matrix) of variables at one point in time is related to its own value at one or more previous points in time, using matrices. [1] [2] The order of the equation is the maximum time gap between any two indicated values of the variable vector. For ...

  1. Related searches calculate matrices on calculator soup maker 3 5 00 buckshot 1000 value

    calculate matrices on calculator soup maker 3 5 00 buckshot 1000 value guide