enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    Green's functions are also useful tools in solving wave equations and diffusion equations. In quantum mechanics, Green's function of the Hamiltonian is a key concept with important links to the concept of density of states. The Green's function as used in physics is usually defined with the opposite sign, instead.

  3. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    The inhomogeneous Helmholtz equation is the equation + = (),, where ƒ : R n → C is a function with compact support, and n = 1, 2, 3. This equation is very similar to the screened Poisson equation , and would be identical if the plus sign (in front of the k term) were switched to a minus sign.

  4. Reciprocity (electromagnetism) - Wikipedia

    en.wikipedia.org/wiki/Reciprocity_(electromagnetism)

    Reciprocity is also a basic lemma that is used to prove other theorems about electromagnetic systems, such as the symmetry of the impedance matrix and scattering matrix, symmetries of Green's functions for use in boundary-element and transfer-matrix computational methods, as well as orthogonality properties of harmonic modes in waveguide ...

  5. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    See Green's functions for the Laplacian or [2] for a detailed argument, with an alternative. It can be further verified that the above identity also applies when ψ is a solution to the Helmholtz equation or wave equation and G is the appropriate Green's function.

  6. Fast multipole method - Wikipedia

    en.wikipedia.org/wiki/Fast_multipole_method

    The fast multipole method (FMM) is a numerical technique that was developed to speed up the calculation of long-ranged forces in the n-body problem.It does this by expanding the system Green's function using a multipole expansion, which allows one to group sources that lie close together and treat them as if they are a single source.

  7. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    This is the Helmholtz equation and can be solved using separation of variables. ... Since the Green's function is constructed from and , the Green's ...

  8. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:

  9. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Helmholtz_equation

    The Gibbs–Helmholtz equation is a thermodynamic equation used to calculate changes in the Gibbs free energy of a system as a function of temperature. It was originally presented in an 1882 paper entitled " Die Thermodynamik chemischer Vorgänge " by Hermann von Helmholtz .