enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Whitehead theorem - Wikipedia

    en.wikipedia.org/wiki/Whitehead_theorem

    For instance, take X= S 2 × RP 3 and Y= RP 2 × S 3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S 2 × S 3; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not ...

  3. CW complex - Wikipedia

    en.wikipedia.org/wiki/CW_complex

    It can be constructed from two points (x and y), and the 1-dimensional ball B (an interval), such that one endpoint of B is glued to x and the other is glued to y. The two points x and y are the 0-cells; the interior of B is the 1-cell. Alternatively, it can be constructed just from a single interval, with no 0-cells. A circle.

  4. Universal coefficient theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_coefficient_theorem

    This becomes straightforward in the absence of 2-torsion in the homology. Quite generally, the result indicates the relationship that holds between the Betti numbers b i of X and the Betti numbers b i,F with coefficients in a field F. These can differ, but only when the characteristic of F is a prime number p for which there is some p-torsion ...

  5. Algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Algebraic_topology

    The Brouwer fixed point theorem: every continuous map from the unit n-disk to itself has a fixed point. The free rank of the nth homology group of a simplicial complex is the nth Betti number, which allows one to calculate the Euler–Poincaré characteristic.

  6. Whitehead's lemma (Lie algebra) - Wikipedia

    en.wikipedia.org/wiki/Whitehead's_lemma_(Lie...

    In homological algebra, Whitehead's lemmas (named after J. H. C. Whitehead) represent a series of statements regarding representation theory of finite-dimensional, semisimple Lie algebras in characteristic zero. Historically, they are regarded as leading to the discovery of Lie algebra cohomology. [1]

  7. Rational homotopy theory - Wikipedia

    en.wikipedia.org/wiki/Rational_homotopy_theory

    There are two basic invariants of a space X in the rational homotopy category: the rational cohomology ring (,) and the homotopy Lie algebra ().The rational cohomology is a graded-commutative algebra over , and the homotopy groups form a graded Lie algebra via the Whitehead product.

  8. Mayer–Vietoris sequence - Wikipedia

    en.wikipedia.org/wiki/Mayer–Vietoris_sequence

    Let X be a topological space and A, B be two subspaces whose interiors cover X. (The interiors of A and B need not be disjoint.) The Mayer–Vietoris sequence in singular homology for the triad (X, A, B) is a long exact sequence relating the singular homology groups (with coefficient group the integers Z) of the spaces X, A, B, and the intersection A∩B. [8]

  9. Whitehead torsion - Wikipedia

    en.wikipedia.org/wiki/Whitehead_torsion

    Two pairs (X 1, A) and (X 2, A) are said to be equivalent, if there is a simple homotopy equivalence between X 1 and X 2 relative to A. The set of such equivalence classes form a group where the addition is given by taking union of X 1 and X 2 with common subspace A. This group is natural isomorphic to the Whitehead group Wh(A) of the CW-complex A.