Search results
Results from the WOW.Com Content Network
For instance, take X= S 2 × RP 3 and Y= RP 2 × S 3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S 2 × S 3; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not ...
There is a technique, developed by Whitehead, for replacing a CW complex with a homotopy-equivalent CW complex that has a simpler CW decomposition. Consider, for example, an arbitrary CW complex. Its 1-skeleton can be fairly complicated, being an arbitrary graph. Now consider a maximal forest F in this graph.
Fundamental groups and homology and cohomology groups are not only invariants of the underlying topological space, in the sense that two topological spaces which are homeomorphic have the same associated groups, but their associated morphisms also correspond—a continuous mapping of spaces induces a group homomorphism on the associated groups ...
Remarkably, Whitehead's theorem says that for CW complexes, a weak homotopy equivalence and a homotopy equivalence are the same thing. Another important result is the approximation theorem. First, the homotopy category of spaces is the category where an object is a space but a morphism is the homotopy class of a map. Then
In homological algebra, Whitehead's lemmas (named after J. H. C. Whitehead) represent a series of statements regarding representation theory of finite-dimensional, semisimple Lie algebras in characteristic zero. Historically, they are regarded as leading to the discovery of Lie algebra cohomology. [1]
In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by Jean Leray (1946a, 1946b), they have become important computational tools, particularly in algebraic topology, algebraic geometry and homological algebra.
For example, the Whitehead theorem holds for ANRs: a map of ANRs that induces an isomorphism on homotopy groups (for all choices of base point) is a homotopy equivalence. Since ANRs include topological manifolds, Hilbert cube manifolds, Banach manifolds, and so on, these results apply to a large class of spaces.
Notice the previous computation with the fact that Borel-Moore homology is an isomorphism invariant gives this computation for the case =. In general, we will find a 1 {\displaystyle 1} -class corresponding to a loop around a point, and the fundamental class [ X ] {\displaystyle [X]} in H 2 B M {\displaystyle H_{2}^{BM}} .