Search results
Results from the WOW.Com Content Network
Strictly speaking, the bulk modulus is a thermodynamic quantity, and in order to specify a bulk modulus it is necessary to specify how the pressure varies during compression: constant- temperature (isothermal ), constant- entropy (isentropic ), and other variations are possible. Such distinctions are especially relevant for gases.
Material properties are most often characterized by a set of numerical parameters called moduli. The elastic properties can be well-characterized by the Young's modulus , Poisson's ratio , Bulk modulus , and Shear modulus or they may be described by the Lamé parameters .
Most materials have Poisson's ratio values ranging between 0.0 and 0.5. For soft materials, [1] such as rubber, where the bulk modulus is much higher than the shear modulus, Poisson's ratio is near 0.5. For open-cell polymer foams, Poisson's ratio is near zero, since the cells tend to collapse in compression.
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.
Elastic modulus. Physical property that measures stiffness of material. An elastic modulus (also known as modulus of elasticity) is the unit of measurement of an object's or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it.
t. e. In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist both shear flow and strain linearly with time when a stress is applied.
For ordinary materials, the bulk compressibility (sum of the linear compressibilities on the three axes) is positive, that is, an increase in pressure squeezes the material to a smaller volume. This condition is required for mechanical stability. [8] However, under very specific conditions, materials can exhibit a compressibility that can be ...
Rule of mixtures. Relation between properties and composition of a compound. The upper and lower bounds on the elastic modulus of a composite material, as predicted by the rule of mixtures. The actual elastic modulus lies between the curves. In materials science, a general rule of mixtures is a weighted mean used to predict various properties ...