Search results
Results from the WOW.Com Content Network
A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47. A repfigit can be a tribonacci sequence if there are 3 digits in the ...
Fibonacci sequence. In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn . Many writers begin the sequence with 0 and 1, although some authors start it from 1 and 1 [1][2] and some (as ...
A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}
For example, consider the recursive formulation for generating the Fibonacci sequence: F i = F i−1 + F i−2, with base case F 1 = F 2 = 1. Then F 43 = F 42 + F 41, and F 42 = F 41 + F 40. Now F 41 is being solved in the recursive sub-trees of both F 43 as well as F 42. Even though the total number of sub-problems is actually small (only 43 ...
Recursion (computer science) Tree created using the Logo programming language and relying heavily on recursion. Each branch can be seen as a smaller version of a tree. Recursive drawing of a SierpiĆski Triangle through turtle graphics. In computer science, recursion is a method of solving a computational problem where the solution depends on ...
The Pisano period, denoted π (n), is the length of the period of this sequence. For example, the sequence of Fibonacci numbers modulo 3 begins: This sequence has period 8, so π (3) = 8. For n = 3, this is a visualization of the Pisano period in the two-dimensional state space of the recurrence relation.
In mathematics, an infinite sequence of numbers is called constant-recursive if it satisfies an equation of the form. for all , where are constants. The equation is called a linear recurrence relation. The concept is also known as a linear recurrence sequence, linear-recursive sequence, linear-recurrent sequence, or a C-finite sequence.
Therefore, the computation of F(n − 2) is reused, and the Fibonacci sequence thus exhibits overlapping subproblems. A naive recursive approach to such a problem generally fails due to an exponential complexity. If the problem also shares an optimal substructure property, dynamic programming is a good way to work it out.