Search results
Results from the WOW.Com Content Network
In computing, a hash table is a data structure that implements an associative array, also called a dictionary or simply map; an associative array is an abstract data type that maps keys to values. [2] A hash table uses a hash function to compute an index, also called a hash code, into an array of buckets or slots, from which the desired value ...
Common Lisp also supports a hash table data type, and for Scheme they are implemented in SRFI 69. Hash tables have greater overhead than alists, but provide much faster access when there are many elements. A further characteristic is the fact that Common Lisp hash tables do not, as opposed to association lists, maintain the order of entry ...
The basic idea behind a hash table is that accessing an element of an array via its index is a simple, constant-time operation. Therefore, the average overhead of an operation for a hash table is only the computation of the key's hash, combined with accessing the corresponding bucket within the array.
For example, if the input is 123 456 789 and the hash table size 10 000, then squaring the key produces 15 241 578 750 190 521, so the hash code is taken as the middle 4 digits of the 17-digit number (ignoring the high digit) 8750. The mid-squares method produces a reasonable hash code if there is not a lot of leading or trailing zeros in the key.
Let h(k) be a hash function that maps an element k to an integer in [0, m−1], where m is the size of the table. Let the i th probe position for a value k be given by the function (,) = + + where c 2 ≠ 0 (If c 2 = 0, then h(k,i) degrades to a linear probe
C++'s Standard Template Library provides the multimap container for the sorted multimap using a self-balancing binary search tree, [1] and SGI's STL extension provides the hash_multimap container, which implements a multimap using a hash table. [2] As of C++11, the Standard Template Library provides the unordered_multimap for the unordered ...
In the programming language C++, unordered associative containers are a group of class templates in the C++ Standard Library that implement hash table variants. Being templates , they can be used to store arbitrary elements, such as integers or custom classes.
The symbol table must have some means of differentiating references to the different "p"s. A common data structure used to implement symbol tables is the hash table. The time for searching in hash tables is independent of the number of elements stored in the table, so it is efficient for a large number of elements.