Search results
Results from the WOW.Com Content Network
Inerting chambers and purging gas lines are important standard safety procedures to take when transferring hydrogen. In order to properly inert or purge, the flammability limits must be taken into account, and hydrogen's are very different from other kinds of gases.
A small amount of fuel in the tank leaves pumps on the floor of the tank exposed to the air-fuel mixture, and an electric pump is a potential ignition source. The explosion of a Thai Airways International Boeing 737 in 2001 and a Philippine Airlines 737 in 1990 also occurred in tanks that had a small amount of residual fuel.
This may change during unloading. When a certain volume of liquid is drawn from a tank, a similar volume of air will enter the tank's headspace, potentially creating an ignitable atmosphere. The inerting systems use an inert gas generator to supply inert make-up gas instead of air. This procedure is often referred to as inerting. Technically ...
Inert gas is produced on board commercial and military aircraft in order to passivate fuel tanks. On hot days, fuel vapour in fuel tanks may otherwise form a flammable or explosive mixture which if oxidized, could have catastrophic consequences. Conventionally, Air Separation Modules (ASMs) have been used to generate inert gas. ASMs contain ...
The theoretical maximum power output from a hydrogen engine depends on the air/fuel ratio and fuel injection method used. The stoichiometric air/fuel ratio for hydrogen is 34:1. At this air/fuel ratio, hydrogen will displace 29% of the combustion chamber leaving only 71% for the air.
One of the most efficient mixtures, oxygen and hydrogen, suffers from the extremely low temperatures required for storing liquid hydrogen (around 20 K or −253.2 °C or −423.7 °F) and very low fuel density (70 kg/m 3 or 4.4 lb/cu ft, compared to RP-1 at 820 kg/m 3 or 51 lb/cu ft), necessitating large tanks that must also be lightweight and ...
A hydrogen tank (other names- cartridge or canister) is used for hydrogen storage. [89] [90] [91] The first type IV hydrogen tanks for compressed hydrogen at 700 bars (70 MPa; 10,000 psi) were demonstrated in 2001, the first fuel cell vehicles on the road with type IV tanks are the Toyota FCHV, Mercedes-Benz F-Cell and the GM HydroGen4.
Methanol reformers are used as a component of stationary fuel cell systems or hydrogen fuel cell-powered vehicles (see Reformed methanol fuel cell). A prototype car, the NECAR 5, was introduced by Daimler-Chrysler in the year 2000. The primary advantage of a vehicle with a reformer is that it does not need a pressurized gas tank to store ...