Search results
Results from the WOW.Com Content Network
In C#, a class is a reference type while a struct (concept derived from the struct in C language) is a value type. [5] Hence an instance derived from a class definition is an object while an instance derived from a struct definition is said to be a value object (to be precise a struct can be made immutable to represent a value object declaring attributes as readonly [6]).
C# has a static class syntax (not to be confused with static inner classes in Java), which restricts a class to only contain static methods. C# 3.0 introduces extension methods to allow users to statically add a method to a type (e.g., allowing foo.bar() where bar() can be an imported extension method working on the type of foo ).
On the other hand, C# has no primitive wrapper classes, but allows boxing of any value type, returning a generic Object reference. In Objective-C, any primitive value can be prefixed by a @ to make an NSNumber out of it (e.g. @123 or @(123)). This allows for adding them in any of the standard collections, such as an NSArray.
Runtime exception handling method in C# is inherited from Java and C++. The base class library has a class called System. Exception from which all other exception classes are derived. An Exception-object contains all the information about a specific exception and also the inner exceptions that were caused.
In this example, the indexer is used to get the value at the nth position, and then to get the position in the list referenced by its value. The output of the code is: John is the member number 0 of the doeFamily Jane is the member number 1 of the doeFamily
Boxing is the operation of converting a value-type object into a value of a corresponding reference type. [106] Boxing in C# is implicit. Unboxing is the operation of converting a value of a reference type (previously boxed) into a value of a value type. [106] Unboxing in C# requires an explicit type cast. A boxed object of type T can only be ...
In object-oriented programming, a class defines the shared aspects of objects created from the class. The capabilities of a class differ between programming languages , but generally the shared aspects consist of state ( variables ) and behavior ( methods ) that are each either associated with a particular object or with all objects of that class.
If a class does not specify its superclass, it implicitly inherits from java.lang.Object class. Thus all classes in Java are subclasses of Object class. If the superclass does not have a constructor without parameters the subclass must specify in its constructors what constructor of the superclass to use. For example: