enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponent bias - Wikipedia

    en.wikipedia.org/wiki/Exponent_bias

    When interpreting the floating-point number, the bias is subtracted to retrieve the actual exponent. For a half-precision number, the exponent is stored in the range 1 .. 30 (0 and 31 have special meanings), and is interpreted by subtracting the bias for an 5-bit exponent (15) to get an exponent value in the range −14 .. +15.

  3. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Inputs An integer b (base), integer e (exponent), and a positive integer m (modulus) Outputs The modular exponent c where c = b e mod m. Initialise c = 1 and loop variable e′ = 0; While e′ < e do Increment e′ by 1; Calculate c = (b ⋅ c) mod m; Output c; Note that at the end of every iteration through the loop, the equation c ≡ b e ...

  4. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  5. Math library - Wikipedia

    en.wikipedia.org/wiki/Math_library

    Exponential in base 2 is similarly the "base case" due to floating-point structure. The procedure is simply a combination of range reduction (usually by lookup) and a polynomial over the remaining mantissa. [7] The natural exponent may be implemented with a separate table for precision, while exp10 can simply be exp(x × log2(10)) when in-range ...

  6. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    Namely, an attacker observing the sequence of squarings and multiplications can (partially) recover the exponent involved in the computation. This is a problem if the exponent should remain secret, as with many public-key cryptosystems. A technique called "Montgomery's ladder" [2] addresses this concern.

  7. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    The RSA cryptosystem is based on this theorem: it implies that the inverse of the function a ↦ a e mod n, where e is the (public) encryption exponent, is the function b ↦ b d mod n, where d, the (private) decryption exponent, is the multiplicative inverse of e modulo φ(n).

  8. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In the base ten number system, integer powers of 10 are written as the digit 1 followed or preceded by a number of zeroes determined by the sign and magnitude of the exponent. For example, 10 3 = 1000 and 10 −4 = 0.0001. Exponentiation with base 10 is used in scientific notation to denote large or small numbers.

  9. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    In expressions such as , the notation for exponentiation is usually to write the exponent as a superscript to the base number .But many environments — such as programming languages and plain-text e-mail — do not support superscript typesetting.