enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    In statistics, Grubbs's test or the Grubbs test (named after Frank E. Grubbs, who published the test in 1950 [1]), also known as the maximum normalized residual test or extreme studentized deviate test, is a test used to detect outliers in a univariate data set assumed to come from a normally distributed population.

  3. Dixon's Q test - Wikipedia

    en.wikipedia.org/wiki/Dixon's_Q_test

    However, at 95% confidence, Q = 0.455 < 0.466 = Q table 0.167 is not considered an outlier. McBane [1] notes: Dixon provided related tests intended to search for more than one outlier, but they are much less frequently used than the r 10 or Q version that is intended to eliminate a single outlier.

  4. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    In statistics, an outlier is a data point that differs significantly from other observations. [ 1 ] [ 2 ] An outlier may be due to a variability in the measurement, an indication of novel data, or it may be the result of experimental error; the latter are sometimes excluded from the data set .

  5. Category:Statistical outliers - Wikipedia

    en.wikipedia.org/wiki/Category:Statistical_outliers

    Pages in category "Statistical outliers" The following 17 pages are in this category, out of 17 total. ... Random sample consensus; S. Studentized residual

  6. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  7. Sample maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Sample_maximum_and_minimum

    The sample maximum and minimum are the least robust statistics: they are maximally sensitive to outliers.. This can either be an advantage or a drawback: if extreme values are real (not measurement errors), and of real consequence, as in applications of extreme value theory such as building dikes or financial loss, then outliers (as reflected in sample extrema) are important.

  8. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.

  9. Look-elsewhere effect - Wikipedia

    en.wikipedia.org/wiki/Look-elsewhere_effect

    A Swedish study in 1992 tried to determine whether or not power lines caused some kind of poor health effects. The researchers surveyed everyone living within 300 m of high-voltage power lines over a 25-year period and looked for statistically significant increases in rates of over 800 ailments.