enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    For elliptical orbits it can also be calculated from the periapsis and apoapsis since = and = (+), where a is the length of the semi-major axis. = + = / / + = + where: r a is the radius at apoapsis (also "apofocus", "aphelion", "apogee"), i.e., the farthest distance of the orbit to the center of mass of the system, which is a focus of the ellipse.

  3. Halley's Comet - Wikipedia

    en.wikipedia.org/wiki/Halley's_Comet

    Halley's calculations enabled the comet's earlier appearances to be found in the historical record. The following table sets out the astronomical designations for every apparition of Halley's Comet from 240 BC, the earliest documented sighting. [7] [166] In the designations, "1P/" refers to Halley's Comet; the first periodic comet discovered.

  4. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Also shown are: semi-major axis a, semi-minor axis b and semi-latus rectum p; center of ellipse and its two foci marked by large dots. For θ = 0°, r = r min and for θ = 180°, r = r max. Mathematically, an ellipse can be represented by the formula: = + ⁡,

  5. Perturbation (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_(astronomy)

    In astronomy, perturbation is the complex motion of a massive body subjected to forces other than the gravitational attraction of a single other massive body. [1] The other forces can include a third (fourth, fifth, etc.) body, resistance, as from an atmosphere, and the off-center attraction of an oblate or otherwise misshapen body.

  6. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    is the length of the semi-major axis. Conclusions: The orbital period is equal to that for a circular orbit with the orbital radius equal to the semi-major axis (), For a given semi-major axis the orbital period does not depend on the eccentricity (See also: Kepler's third law).

  7. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    a is the orbit's semi-major axis; G is the gravitational constant, M is the mass of the more massive body. For all ellipses with a given semi-major axis the orbital period is the same, regardless of eccentricity. Inversely, for calculating the distance where a body has to orbit in order to have a given orbital period T:

  8. Lambert's problem - Wikipedia

    en.wikipedia.org/wiki/Lambert's_problem

    semi-major axis = 23001 km; eccentricity = 0.566613; true anomaly at time t 1 = −7.577° true anomaly at time t 2 = 92.423° This y-value corresponds to Figure 3. With r 1 = 10000 km; r 2 = 16000 km; α = 260° one gets the same ellipse with the opposite direction of motion, i.e. true anomaly at time t 1 = 7.577°

  9. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    For any ellipse, let a be the length of its semi-major axis and b be the length of its semi-minor axis. In the coordinate system with origin at the ellipse's center and x-axis aligned with the major axis, points on the ellipse satisfy the equation + =,