Search results
Results from the WOW.Com Content Network
Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property. It starts at the tree root and explores all nodes at the present depth prior to moving on to the nodes at the next depth level.
The recursive implementation will visit the nodes from the example graph in the following order: A, B, D, F, E, C, G. The non-recursive implementation will visit the nodes as: A, E, F, B, D, C, G. The non-recursive implementation is similar to breadth-first search but differs from it in two ways: it uses a stack instead of a queue, and
The Lee algorithm is one possible solution for maze routing problems based on breadth-first search. It always gives an optimal solution, if one exists, but is slow and requires considerable memory. It always gives an optimal solution, if one exists, but is slow and requires considerable memory.
Even and Itai also contributed to this algorithm by combining BFS and DFS, which is how the algorithm is now commonly presented. [ 2 ] For about 10 years of time after the Ford–Fulkerson algorithm was invented, it was unknown if it could be made to terminate in polynomial time in the general case of irrational edge capacities.
IDDFS achieves breadth-first search's completeness (when the branching factor is finite) using depth-first search's space-efficiency. If a solution exists, it will find a solution path with the fewest arcs. [2] Iterative deepening visits states multiple times, and it may seem wasteful.
The following pseudo-code of a 1-D distributed memory BFS [5] was originally designed for IBM BlueGene/L systems, which have a 3D torus network architecture. Because the synchronization is the main extra cost for parallelized BFS, the authors of this paper also developed a scalable all-to-all communication based on point-to-point communications .
In computer science, the Edmonds–Karp algorithm is an implementation of the Ford–Fulkerson method for computing the maximum flow in a flow network in (| | | |) time. The algorithm was first published by Yefim Dinitz in 1970, [1] [2] and independently published by Jack Edmonds and Richard Karp in 1972. [3]
Examples include biological or social networks, which contain hundreds, thousands and even billions of nodes in some cases (e.g. Facebook or LinkedIn). 1-planarity [1] 3-dimensional matching [2] [3]: SP1 Bandwidth problem [3]: GT40 Bipartite dimension [3]: GT18 Capacitated minimum spanning tree [3]: ND5