Search results
Results from the WOW.Com Content Network
Most useful ATP analogs cannot be hydrolyzed as ATP would be; instead, they trap the enzyme in a structure closely related to the ATP-bound state. Adenosine 5′-(γ-thiotriphosphate) is an extremely common ATP analog in which one of the gamma-phosphate oxygens is replaced by a sulfur atom; this anion is hydrolyzed at a dramatically slower rate ...
Active transport is essential for various physiological processes, such as nutrient uptake, hormone secretion, and nerve impulse transmission. For example, the sodium-potassium pump uses ATP to pump sodium ions out of the cell and potassium ions into the cell, maintaining a concentration gradient essential for cellular function. Active ...
The ATP generated in this process is made by substrate-level phosphorylation, which does not require oxygen. Fermentation is less efficient at using the energy from glucose: only 2 ATP are produced per glucose, compared to the 38 ATP per glucose nominally produced by aerobic respiration. Glycolytic ATP, however, is produced more quickly.
If you see this term in a text, there are a couple of possible meanings.
Phosphorylation is essential to the processes of both anaerobic and aerobic respiration, which involve the production of adenosine triphosphate (ATP), the "high-energy" exchange medium in the cell. During aerobic respiration, ATP is synthesized in the mitochondrion by addition of a third phosphate group to adenosine diphosphate (ADP) in a ...
The sodium–potassium pump (a type of P-type ATPase) is found in many cell (plasma) membranes and is an example of primary active transport.Powered by ATP, the pump moves sodium and potassium ions in opposite directions, each against its concentration gradient.
Adenosine triphosphate, an organic chemical used for driving biological processes . ATPase, any enzyme that makes use of adenosine triphosphate; Advanced Technology Program, US government program
ATP synthase is powered by a proton-motive force created by using the energy generated from the electron transport chain. A hydrogen ion (H + ) has a positive charge and if separated by a cellular membrane, it creates a difference in charge between the inside and outside of the membrane.