Search results
Results from the WOW.Com Content Network
In fluid dynamics the Milne-Thomson circle theorem or the circle theorem is a statement giving a new stream function for a fluid flow when a cylinder is placed into that flow. [ 1 ] [ 2 ] It was named after the English mathematician L. M. Milne-Thomson .
The following outline is provided as an overview of and topical guide to fluid dynamics: . In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases.
The Richardson number (Ri) is named after Lewis Fry Richardson (1881–1953). [1] It is the dimensionless number that expresses the ratio of the buoyancy term to the flow shear term: [2]
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form.This technique can ease the analysis of the problem at hand, and reduce the number of free parameters.
Three examples of droplet detachment for different fluids: (left) water, (center) glycerol, (right) a solution of PEG in water. In fluid dynamics, the Plateau–Rayleigh instability, often just called the Rayleigh instability, explains why and how a falling stream of fluid breaks up into smaller packets with the same total volume but less surface area per droplet.
One of the earliest particle methods is smoothed particle hydrodynamics, presented in 1977. [1] Libersky et al. [2] were the first to apply SPH in solid mechanics. The main drawbacks of SPH are inaccurate results near boundaries and tension instability that was first investigated by Swegle.
The journal focuses on fluid dynamics and also covers geophysical fluid dynamics, biofluid dynamics, nanofluidics and magnetohydrodynamics. Its lead editors are Eric Lauga (University of Cambridge) and Beverley McKeon (California Institute of Technology). [1] The journal launched in January 2016 and published its 500th article in 2017. [2]