Search results
Results from the WOW.Com Content Network
The Archimedean solids have a single vertex configuration and highly symmetric properties. A vertex configuration indicates which regular polygons meet at each vertex. For instance, the configuration indicates a polyhedron in which each vertex is met by alternating two triangles and two pentagons.
The solid angle, Ω, at the vertex of a Platonic solid is given in terms of the dihedral angle by Ω = q θ − ( q − 2 ) π . {\displaystyle \Omega =q\theta -(q-2)\pi .\,} This follows from the spherical excess formula for a spherical polygon and the fact that the vertex figure of the polyhedron { p , q } is a regular q -gon.
A further source of confusion lies in the way that the Archimedean solids are defined, again with different interpretations appearing. Gosset's definition of semiregular includes figures of higher symmetry: the regular and quasiregular polyhedra. Some later authors prefer to say that these are not semiregular, because they are more regular than ...
In geometry, a convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid. [1] Some authors exclude uniform polyhedra (in which all vertices are symmetric to each other) from the definition; uniform polyhedra include Platonic and Archimedean solids as well as prisms and antiprisms. [2]
The truncated tetrahedron is an Archimedean solid, meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in a vertex. [6] The truncated tetrahedron has the same three-dimensional group symmetry as the regular tetrahedron, the tetrahedral symmetry T h {\displaystyle \mathrm {T ...
The icosidodecahedron is an Archimedean solid, meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in a vertex. [5] The polygonal faces that meet for every vertex are two equilateral triangles and two regular pentagons, and the vertex figure of an icosidodecahedron is {{nowrap|(3 ...
1.1 Platonic solids. 1.2 Achiral Archimedean solids. 1.3 Achiral Catalan solids. ... Dual Archimedean solid Faces Edges Vertices Face Polygon rhombic triacontahedron
Most Johnson solids can be constructed from the first few solids (pyramids, cupolae, and a rotunda), together with the Platonic and Archimedean solids, prisms, and antiprisms; the center of a particular solid's name will reflect these ingredients.