enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Archimedean solid - Wikipedia

    en.wikipedia.org/wiki/Archimedean_solid

    Some Archimedean solids were portrayed in the works of artists and mathematicians during the Renaissance. The elongated square gyrobicupola or pseudo­rhombi­cub­octa­hedron is an extra polyhedron with regular faces and congruent vertices, but it is not generally counted as an Archimedean solid because it is not vertex-transitive .

  3. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    The solid angle, Ω, at the vertex of a Platonic solid is given in terms of the dihedral angle by Ω = q θ − ( q − 2 ) π . {\displaystyle \Omega =q\theta -(q-2)\pi .\,} This follows from the spherical excess formula for a spherical polygon and the fact that the vertex figure of the polyhedron { p , q } is a regular q -gon.

  4. List of Wenninger polyhedron models - Wikipedia

    en.wikipedia.org/wiki/List_of_Wenninger...

    1 Platonic solids (regular convex polyhedra) W1 to W5. 2 Archimedean solids (Semiregular) W6 to W18. 3 Kepler–Poinsot polyhedra (Regular star polyhedra) W20, ...

  5. De quinque corporibus regularibus - Wikipedia

    en.wikipedia.org/wiki/De_quinque_corporibus...

    Truncated icosahedron, one of the Archimedean solids illustrated in De quinque corporibus regularibus. The five Platonic solids (the regular tetrahedron, cube, octahedron, dodecahedron, and icosahedron) were known to della Francesca through two classical sources: Timaeus, in which Plato theorizes that four of them correspond to the classical elements making up the world (with the fifth, the ...

  6. Semiregular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Semiregular_polyhedron

    The thirteen Archimedean solids. The elongated square gyrobicupola (also called a pseudo-rhombicuboctahedron), a Johnson solid, has identical vertex figures (3.4.4.4) but because of a twist it is not vertex-transitive. Branko Grünbaum argued for including it as a 14th Archimedean solid. An infinite series of convex prisms.

  7. Uniform polyhedron - Wikipedia

    en.wikipedia.org/wiki/Uniform_polyhedron

    The dual of a regular polyhedron is regular, while the dual of an Archimedean solid is a Catalan solid. The concept of uniform polyhedron is a special case of the concept of uniform polytope, which also applies to shapes in higher-dimensional (or lower-dimensional) space.

  8. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    Important classes of convex polyhedra include the family of prismatoid, the Platonic solids, the Archimedean solids and their duals the Catalan solids, and the regular polygonal faces polyhedron. The prismatoids are the polyhedron whose vertices lie on two parallel planes and their faces are likely to be trapezoids and triangles. [ 18 ]

  9. Template:Polyhedron types - Wikipedia

    en.wikipedia.org/wiki/Template:Polyhedron_types

    Platonic solids (5, convex, regular) Archimedean solids (13, convex, uniform) Kepler–Poinsot polyhedra (4, regular, non-convex) Uniform polyhedra (75, uniform) Prismatoid: prisms, antiprisms etc. (4 infinite uniform classes) Polyhedra tilings (11 regular, in the plane) Quasi-regular polyhedra Johnson solids (92, convex, non-uniform) Bipyramids