enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  3. Least-angle regression - Wikipedia

    en.wikipedia.org/wiki/Least-angle_regression

    In statistics, least-angle regression (LARS) is an algorithm for fitting linear regression models to high-dimensional data, developed by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani. [1] Suppose we expect a response variable to be determined by a linear combination of a subset of potential covariates.

  4. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Bayesian linear regression applies the framework of Bayesian statistics to linear regression. (See also Bayesian multivariate linear regression .) In particular, the regression coefficients β are assumed to be random variables with a specified prior distribution .

  5. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  6. Outline of regression analysis - Wikipedia

    en.wikipedia.org/wiki/Outline_of_regression_analysis

    Regression analysis – use of statistical techniques for learning about the relationship between one or more dependent variables (Y) and one or more independent variables (X). Overview articles [ edit ]

  7. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    A common example would be restricting to linear functions: this can be seen as a reduction to the standard problem of linear regression. could also be restricted to polynomial of degree , exponentials, or bounded functions on L1. Restriction of the hypothesis space avoids overfitting because the form of the potential functions are limited, and ...

  8. Relevance vector machine - Wikipedia

    en.wikipedia.org/wiki/Relevance_vector_machine

    In mathematics, a Relevance Vector Machine (RVM) is a machine learning technique that uses Bayesian inference to obtain parsimonious solutions for regression and probabilistic classification. [1] A greedy optimisation procedure and thus fast version were subsequently developed.

  9. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    In mathematical optimization, the problem of non-negative least squares (NNLS) is a type of constrained least squares problem where the coefficients are not allowed to become negative.