Search results
Results from the WOW.Com Content Network
The transpose of a matrix A, denoted by A T, [3] ⊤ A, A ⊤, , [4] [5] A′, [6] A tr, t A or A t, may be constructed by any one of the following methods: Reflect A over its main diagonal (which runs from top-left to bottom-right) to obtain A T; Write the rows of A as the columns of A T; Write the columns of A as the rows of A T
In logic and mathematics, contraposition, or transposition, refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as § Proof by contrapositive. The contrapositive of a statement has its antecedent and consequent inverted and flipped.
Transposition (mathematics), a permutation which exchanges two elements and keeps all others fixed; Transposition, producing the transpose of a matrix A T, which is computed by swapping columns for rows in the matrix A; Transpose of a linear map; Transposition (logic), a rule of replacement in philosophical logic
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an complex matrix is an matrix obtained by transposing and applying complex conjugation to each entry (the complex conjugate of + being , for real numbers and ).
Note: solving for ′ returns the resultant angle in the first quadrant (< <). To find , one must refer to the original Cartesian coordinate, determine the quadrant in which lies (for example, (3,−3) [Cartesian] lies in QIV), then use the following to solve for :
[d] It also introduced the fundamental concept of "reduction" and "balancing" (which the term al-jabr originally referred to), the transposition of subtracted terms to the other side of an equation, i.e. the cancellation of like terms on opposite sides of the equation. [e] The mathematics historian Victor J. Katz regards Al-Jabr as the first ...
In example if , and , are two arbitrary selected elements from the same column q of matrix, then, matrix consists one fours of elements (,,,,,), for which are satisfied the equations , =, and , =,. This property, named “Tr-property” is specific to T r {\displaystyle Tr} matrices.
A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .