enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Aircraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Aircraft_flight_dynamics

    considered point of the surface. Under these conditions, drag and lift coefficient are functions depending exclusively on the angle of attack of the body and Mach and Reynolds numbers. Aerodynamic efficiency, defined as the relation between lift and drag coefficients, will depend on those parameters as well.

  3. Flight control surfaces - Wikipedia

    en.wikipedia.org/wiki/Flight_control_surfaces

    Some aircraft configurations have non-standard primary controls. For example, instead of elevators at the back of the stabilizers, the entire tailplane may change angle. Some aircraft have a tail in the shape of a V, and the moving parts at the back of those combine the functions of elevators and rudder.

  4. Aircraft flight mechanics - Wikipedia

    en.wikipedia.org/wiki/Aircraft_flight_mechanics

    Aircraft flight mechanics are relevant to fixed wing (gliders, aeroplanes) and rotary wing (helicopters) aircraft.An aeroplane (airplane in US usage), is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight".

  5. Flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Flight_dynamics

    Propulsive, aerodynamic, and gravitational force vectors acting on a space vehicle during launch. The forces acting on space vehicles are of three types: propulsive force (usually provided by the vehicle's engine thrust); gravitational force exerted by the Earth and other celestial bodies; and aerodynamic lift and drag (when flying in the atmosphere of the Earth or another body, such as Mars ...

  6. Rotation (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(aeronautics)

    After rotation, the aircraft continues to accelerate until it reaches its liftoff speed V LO, at which point it leaves the runway. After liftoff, a speed V 2 will be called out, being the speed at which the aircraft is able to climb at a sufficient rate to reach its cruising altitude, and therefore at which the gear will be retracted. [ 2 ]

  7. Steady flight - Wikipedia

    en.wikipedia.org/wiki/Steady_flight

    This equilibrium can be expressed along a variety of axes in a variety of reference frames. The traditional steady flight equations derive from expressing this force balance along three axes: the x w-axis, the radial direction of the aircraft's turn in the x E-y E plane, and the axis perpendicular to x w in the x w-z E plane, [5]

  8. Pitching moment - Wikipedia

    en.wikipedia.org/wiki/Pitching_moment

    The aerodynamic center of an airfoil is usually close to 25% of the chord behind the leading edge of the airfoil. When making tests on a model airfoil, such as in a wind-tunnel, if the force sensor is not aligned with the quarter-chord of the airfoil, but offset by a distance x, the pitching moment about the quarter-chord point, / is given by

  9. Dihedral (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Dihedral_(aeronautics)

    The center of mass, usually called the center of gravity or "CG", is the balance point of an aircraft. If suspended at this point and allowed to rotate, a body (aircraft) will be balanced. The front-to-back location of the CG is of primary importance for the general stability of the aircraft, but the vertical location has important effects as well.