enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    the third side of a triangle if two sides and an angle opposite to one of them is known (this side can also be found by two applications of the law of sines): [a] = ⁡ ⁡. These formulas produce high round-off errors in floating point calculations if the triangle is very acute, i.e., if c is small relative to a and b or γ is small compared to 1.

  3. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    To find an unknown angle, the law of cosines is safer than the law of sines. The reason is that the value of sine for the angle of the triangle does not uniquely determine this angle. For example, if sin β = 0.5, the angle β can equal either 30° or 150°. Using the law of cosines avoids this problem: within the interval from 0° to 180° the ...

  4. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Case 1: three sides given (SSS). The cosine rule may be used to give the angles A, B, and C but, to avoid ambiguities, the half angle formulae are preferred. Case 2: two sides and an included angle given (SAS). The cosine rule gives a and then we are back to Case 1. Case 3: two sides and an opposite angle given (SSA).

  5. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    If the law of cosines is used to solve for c, the necessity of inverting the cosine magnifies rounding errors when c is small. In this case, the alternative formulation of the law of haversines is preferable. [3] A variation on the law of cosines, the second spherical law of cosines, [4] (also called the cosine rule for angles [1]) states:

  6. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    With these functions, one can answer virtually all questions about arbitrary triangles by using the law of sines and the law of cosines. [33] These laws can be used to compute the remaining angles and sides of any triangle as soon as two sides and their included angle or two angles and a side or three sides are known.

  7. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...

  8. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles , see Trigonometric functions . Other definitions, and therefore other proofs are based on the Taylor series of sine and cosine , or on the differential equation f ″ + f = 0 ...

  9. Hypotenuse - Wikipedia

    en.wikipedia.org/wiki/Hypotenuse

    In a right triangle, the cosine of an angle is the ratio of the leg adjacent of the angle and the hypotenuse. For a right angle γ (gamma), where the adjacent leg equals 0, the cosine of γ also equals 0. The law of cosines formulates that = + ⁡ holds for some angle θ (theta).

  1. Related searches when do you use law of cos to find sides given one value and equal measures

    law of cosines definitioneuclidean laws of cosines
    the law of cosines wikiwhat is the cosine rule
    cosines equationspherical laws of cosines