enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron-withdrawing group - Wikipedia

    en.wikipedia.org/wiki/Electron-withdrawing_group

    Electron-withdrawing groups are the opposite effect of electron-donating groups (EDGs). Both describe functional groups , however, electron-withdrawing groups pull electron density away from a molecule, whereas EDGs push electron density onto a substituent.

  3. Electrophilic aromatic directing groups - Wikipedia

    en.wikipedia.org/wiki/Electrophilic_aromatic...

    Electron donating groups are generally ortho/para directors for electrophilic aromatic substitutions, while electron withdrawing groups (except the halogens) are generally meta directors. The selectivities observed with EDGs and EWGs were first described in 1892 and have been known as the Crum Brown–Gibson rule.

  4. Inductive effect - Wikipedia

    en.wikipedia.org/wiki/Inductive_effect

    In Organic chemistry, the inductive effect in a molecule is a local change in the electron density due to electron-withdrawing or electron-donating groups elsewhere in the molecule, resulting in a permanent dipole in a bond. [1] It is present in a σ (sigma) bond, unlike the electromeric effect which is present in a π (pi) bond.

  5. Captodative effect - Wikipedia

    en.wikipedia.org/wiki/Captodative_effect

    The captodative effect is the stabilization of radicals by a synergistic effect of an electron-withdrawing substituent and an electron-donating substituent. [2] [3] The name originates as the electron-withdrawing group (EWG) is sometimes called the "captor" group, whilst the electron-donating group (EDG) is the "dative" substituent. [3]

  6. Mesomeric effect - Wikipedia

    en.wikipedia.org/wiki/Mesomeric_effect

    The mesomeric effect is negative (–M) when the substituent is an electron-withdrawing group, and the effect is positive (+M) when the substituent is an electron donating group. Below are two examples of the +M and –M effect. Additionally, the functional groups that contribute to each type of resonance are given below.

  7. Methoxy group - Wikipedia

    en.wikipedia.org/wiki/Methoxy_group

    In organic chemistry, a methoxy group is the functional group consisting of a methyl group bound to oxygen. This alkoxy group has the formula R−O−CH 3 . On a benzene ring , the Hammett equation classifies a methoxy substituent at the para position as an electron-donating group , but as an electron-withdrawing group if at the meta position.

  8. Electronic effect - Wikipedia

    en.wikipedia.org/wiki/Electronic_effect

    When this center is an electron rich carbanion or an alkoxide anion, the presence of the electron-withdrawing substituent has a stabilizing effect. Similarly, an electron-releasing group (ERG) or electron-donating group (EDG) releases electrons into a reaction center and as such stabilizes electron deficient carbocations.

  9. Hammett equation - Wikipedia

    en.wikipedia.org/wiki/Hammett_equation

    For meta-directing groups (electron withdrawing group or EWG), σ meta and σ para are more positive than σ’. (The superscript, c, in table denotes data from Hammett, 1940. [11] [page needed]) For ortho-para directing groups (electron donating group or EDG), σ’ more positive than σ meta and σ para.