Search results
Results from the WOW.Com Content Network
Electron-withdrawing groups are the opposite effect of electron-donating groups (EDGs). Both describe functional groups , however, electron-withdrawing groups pull electron density away from a molecule, whereas EDGs push electron density onto a substituent.
Electron donating groups are generally ortho/para directors for electrophilic aromatic substitutions, while electron withdrawing groups (except the halogens) are generally meta directors. The selectivities observed with EDGs and EWGs were first described in 1892 and have been known as the Crum Brown–Gibson rule.
In Organic chemistry, the inductive effect in a molecule is a local change in the electron density due to electron-withdrawing or electron-donating groups elsewhere in the molecule, resulting in a permanent dipole in a bond. [1] It is present in a σ (sigma) bond, unlike the electromeric effect which is present in a π (pi) bond.
The captodative effect is the stabilization of radicals by a synergistic effect of an electron-withdrawing substituent and an electron-donating substituent. [2] [3] The name originates as the electron-withdrawing group (EWG) is sometimes called the "captor" group, whilst the electron-donating group (EDG) is the "dative" substituent. [3]
The mesomeric effect is negative (–M) when the substituent is an electron-withdrawing group, and the effect is positive (+M) when the substituent is an electron donating group. Below are two examples of the +M and –M effect. Additionally, the functional groups that contribute to each type of resonance are given below.
In organic chemistry, a methoxy group is the functional group consisting of a methyl group bound to oxygen. This alkoxy group has the formula R−O−CH 3 . On a benzene ring , the Hammett equation classifies a methoxy substituent at the para position as an electron-donating group , but as an electron-withdrawing group if at the meta position.
When this center is an electron rich carbanion or an alkoxide anion, the presence of the electron-withdrawing substituent has a stabilizing effect. Similarly, an electron-releasing group (ERG) or electron-donating group (EDG) releases electrons into a reaction center and as such stabilizes electron deficient carbocations.
For meta-directing groups (electron withdrawing group or EWG), σ meta and σ para are more positive than σ’. (The superscript, c, in table denotes data from Hammett, 1940. [11] [page needed]) For ortho-para directing groups (electron donating group or EDG), σ’ more positive than σ meta and σ para.