enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The beam equation contains a fourth-order derivative in . To find a unique solution w ( x , t ) {\displaystyle w(x,t)} we need four boundary conditions. The boundary conditions usually model supports , but they can also model point loads, distributed loads and moments.

  4. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    Acceleration is the second derivative of displacement i.e. acceleration can be found by differentiating position with respect to time twice or differentiating velocity with respect to time once. [10] The SI unit of acceleration is m ⋅ s − 2 {\displaystyle \mathrm {m\cdot s^{-2}} } or metre per second squared .

  5. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    In SI, this slope or derivative is expressed in the units of meters per second per second (/, usually termed "meters per second-squared"). Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the ...

  6. Displacement (geometry) - Wikipedia

    en.wikipedia.org/wiki/Displacement_(geometry)

    In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. [1] It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory .

  7. Castigliano's method - Wikipedia

    en.wikipedia.org/wiki/Castigliano's_method

    Castigliano's method for calculating displacements is an application of his second theorem, which states: If the strain energy of a linearly elastic structure can be expressed as a function of generalised force Q i then the partial derivative of the strain energy with respect to generalised force gives the generalised displacement q i in the direction of Q i.

  8. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    With this form for the displacement, the velocity now is found. The time derivative of the displacement vector is the velocity vector. In general, the derivative of a vector is a vector made up of components each of which is the derivative of the corresponding component of the original vector. Thus, in this case, the velocity vector is:

  9. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The symmetric difference quotient is employed as the method of approximating the derivative in a number of calculators, including TI-82, TI-83, TI-84, TI-85, all of which use this method with h = 0.001.