Search results
Results from the WOW.Com Content Network
This website is also cited in the CRC Handbook as source of Section 1, subsection Electron Configuration of Neutral Atoms in the Ground State. 91 Pa : [Rn] 5f 2 (3 H 4) 6d 7s 2; 92 U : [Rn] 5f 3 (4 I o 9/2) 6d 7s 2; 93 Np : [Rn] 5f 4 (5 I 4) 6d 7s 2; 103 Lr : [Rn] 5f 14 7s 2 7p 1 question-marked; 104 Rf : [Rn] 5f 14 6d 2 7s 2 question-marked
Gaseous chromium has a ground-state electron configuration of 3d 5 4s 1. It is the first element in the periodic table whose configuration violates the Aufbau principle. Exceptions to the principle also occur later in the periodic table for elements such as copper, niobium and molybdenum. [17]
The configuration that corresponds to the lowest electronic energy is called the ground state. Any other configuration is an excited state. As an example, the ground state configuration of the sodium atom is 1s 2 2s 2 2p 6 3s 1, as deduced from the Aufbau principle (see below).
An atom can have a ground state with two incompletely filled subshells which are close in energy. The lightest example is the chromium (Cr) atom with a 3d 5 4s electron configuration. Here there are six unpaired electrons all of parallel spin for a 7 S ground state. [5]
Grayed out electron numbers indicate subshells filled to their maximum. Bracketed noble gas symbols on the left represent inner configurations that are the same in each period. Written out, these are: He, 2, helium : 1s 2 Ne, 10, neon : 1s 2 2s 2 2p 6 Ar, 18, argon : 1s 2 2s 2 2p 6 3s 2 3p 6 Kr, 36, krypton : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 ...
An example is chromium whose electron configuration is [Ar]4s 1 3d 5 with a d electron count of 5 for a half-filled d subshell, although Madelung's rule predicts [Ar]4s 2 3d 4. Similarly copper is [Ar]4s 1 3d 10 with a full d subshell, and not [Ar]4s 2 3d 9. The configuration of palladium is [Kr]4d 10 with zero 5s electrons.
The rule then predicts the electron configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 9 4s 2, abbreviated [Ar] 3d 9 4s 2 where [Ar] denotes the configuration of argon, the preceding noble gas. However, the measured electron configuration of the copper atom is [Ar] 3d 10 4s 1. By filling the 3d subshell, copper can be in a lower energy state.
Energy levels for an electron in an atom: ground state and excited states. After absorbing energy, an electron may jump from the ground state to a higher-energy excited state. The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system.