Search results
Results from the WOW.Com Content Network
The BN-350 fast-neutron reactor at Aktau, Kazakhstan.It operated between 1973 and 1994. A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow thermal neutrons used in thermal-neutron reactors.
Three systems are nominally thermal reactors and three are fast reactors. The very high temperature reactor (VHTR) potentially can provide high quality process heat. Fast reactors offer the possibility of burning actinides to further reduce waste and can breed more fuel than they consume. These systems offer significant advances in ...
A fast reactor is therefore more efficient than a thermal reactor for using plutonium and higher actinides as fuel. These fast reactors are better suited for the transmutation of other actinides than thermal reactors. Because thermal reactors use slow or moderated neutrons, the actinides that are not fissionable with thermal neutrons tend to ...
A thermal-neutron reactor is a nuclear reactor that uses slow or thermal neutrons.. ("Thermal" does not mean hot in an absolute sense, but means in thermal equilibrium with the medium it is interacting with, the reactor's fuel, moderator and structure, which is much lower energy than the fast neutrons initially produced by fission.)
Gas-cooled fast reactor scheme. The gas-cooled fast reactor (GFR) system is a nuclear reactor design which is currently in development.Classed as a Generation IV reactor, it features a fast-neutron spectrum and closed fuel cycle for efficient conversion of fertile uranium and management of actinides.
This is especially the case for companies studying fast neutron reactors of 4th generation (molten salts reactors, metal-cooled reactors (sodium-cooled fast reactor, or lead-cooled fast reactor). Fast breeder reactors "burn" 235 U (0.7% of natural uranium), but also convert fertile materials such as 238 U (99.3% of natural uranium) into fissile 239
A: So the reactor is fueled, the reactor is closed, bolted shut. Control rods are slowly being pulled out. The control rods absorb neutrons without undergoing any nuclear reactions.
In April 1986, two special tests were performed on the EBR-II, in which the main primary cooling pumps were shut off with the reactor at full power (62.5 megawatts, thermal). By not allowing the normal shutdown systems to interfere, the reactor power dropped to near zero within about 300 seconds. No damage to the fuel or the reactor resulted.