Search results
Results from the WOW.Com Content Network
For very simple problems, say a function of two variables subject to a single equality constraint, it is most practical to apply the method of substitution. [4] The idea is to substitute the constraint into the objective function to create a composite function that incorporates the effect of the constraint.
Consider a family of convex optimization problems of the form: minimize f(x) s.t. x is in G, where f is a convex function and G is a convex set (a subset of an Euclidean space R n). Each problem p in the family is represented by a data-vector Data( p ), e.g., the real-valued coefficients in matrices and vectors representing the function f and ...
A step of the Frank–Wolfe algorithm Initialization: Let , and let be any point in . Step 1. Direction-finding subproblem: Find solving Minimize () Subject to (Interpretation: Minimize the linear approximation of the problem given by the first-order Taylor approximation of around constrained to stay within .)
g i (x) ≤ 0 are called inequality constraints; h j (x) = 0 are called equality constraints, and; m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem. A maximization problem can be treated by negating the objective function.
In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1] It is named after the mathematician Joseph-Louis ...
minimize f(x) subject to x ≤ b. where b is some constant. If one wishes to remove the inequality constraint, the problem can be reformulated as minimize f(x) + c(x), where c(x) = ∞ if x > b, and zero otherwise. This problem is equivalent to the first.
[3] [4] The drift-plus-penalty method can also be used to minimize the time average of a stochastic process subject to time average constraints on a collection of other stochastic processes. [5] This is done by defining an appropriate set of virtual queues. It can also be used to produce time averaged solutions to convex optimization problems ...
Minimize subject to the algebraic constraints = () Depending upon the type of direct method employed, the size of the nonlinear optimization problem can be quite small (e.g., as in a direct shooting or quasilinearization method), moderate (e.g. pseudospectral optimal control [ 11 ] ) or may be quite large (e.g., a direct collocation method [ 12