enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deep reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Deep_reinforcement_learning

    Various techniques exist to train policies to solve tasks with deep reinforcement learning algorithms, each having their own benefits. At the highest level, there is a distinction between model-based and model-free reinforcement learning, which refers to whether the algorithm attempts to learn a forward model of the environment dynamics.

  3. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Adversarial deep reinforcement learning is an active area of research in reinforcement learning focusing on vulnerabilities of learned policies. In this research area some studies initially showed that reinforcement learning policies are susceptible to imperceptible adversarial manipulations.

  4. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    In machine learning, reinforcement learning from human feedback (RLHF) is a technique to align an intelligent agent with human preferences. It involves training a reward model to represent preferences, which can then be used to train other models through reinforcement learning .

  5. Proximal policy optimization - Wikipedia

    en.wikipedia.org/wiki/Proximal_Policy_Optimization

    Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an intelligent agent's decision function to accomplish difficult tasks. PPO was developed by John Schulman in 2017, [1] and had become the default RL algorithm at the US artificial intelligence company OpenAI. [2]

  6. AlphaDev - Wikipedia

    en.wikipedia.org/wiki/AlphaDev

    AlphaDev is an artificial intelligence system developed by Google DeepMind to discover enhanced computer science algorithms using reinforcement learning.AlphaDev is based on AlphaZero, a system that mastered the games of chess, shogi and go by self-play.

  7. Self-play - Wikipedia

    en.wikipedia.org/wiki/Self-play

    In multi-agent reinforcement learning experiments, researchers try to optimize the performance of a learning agent on a given task, in cooperation or competition with one or more agents. These agents learn by trial-and-error, and researchers may choose to have the learning algorithm play the role of two or more of the different agents.

  8. Q-learning - Wikipedia

    en.wikipedia.org/wiki/Q-learning

    Q-learning is a model-free reinforcement learning algorithm that teaches an agent to assign values to each action it might take, conditioned on the agent being in a particular state. It does not require a model of the environment (hence "model-free"), and it can handle problems with stochastic transitions and rewards without requiring adaptations.

  9. Pieter Abbeel - Wikipedia

    en.wikipedia.org/wiki/Pieter_Abbeel

    The website discloses that the team is building a universal AI to help robots see, reason, and on the world around them using deep imitation learning and deep reinforcement learning. Currently, in addition to his research, Abbeel teaches upper-division and graduate classes on Artificial Intelligence, Robotics, and Deep Unsupervised Learning. [22]