Search results
Results from the WOW.Com Content Network
In model-based deep reinforcement learning algorithms, a forward model of the environment dynamics is estimated, usually by supervised learning using a neural network. Then, actions are obtained by using model predictive control using the learned model. Since the true environment dynamics will usually diverge from the learned dynamics, the ...
Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...
When learning from human feedback through pairwise comparison under the Bradley–Terry–Luce model (or the Plackett–Luce model for K-wise comparisons over more than two comparisons), the maximum likelihood estimator (MLE) for linear reward functions has been shown to converge if the comparison data is generated under a well-specified linear ...
Q-learning is a model-free reinforcement learning algorithm that teaches an agent to assign values to each action it might take, conditioned on the agent being in a particular state. It does not require a model of the environment (hence "model-free"), and it can handle problems with stochastic transitions and rewards without requiring adaptations.
Deep models (CAP > two) are able to extract better features than shallow models and hence, extra layers help in learning the features effectively. Deep learning architectures can be constructed with a greedy layer-by-layer method. [11] Deep learning helps to disentangle these abstractions and pick out which features improve performance. [8]
Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an intelligent agent's decision function to accomplish difficult tasks. PPO was developed by John Schulman in 2017, [1] and had become the default RL algorithm at the US artificial intelligence company OpenAI. [2]
Multi-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. [ 1 ] Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the ...
Model-free RL algorithms can start from a blank policy candidate and achieve superhuman performance in many complex tasks, including Atari games, StarCraft and Go.Deep neural networks are responsible for recent artificial intelligence breakthroughs, and they can be combined with RL to create superhuman agents such as Google DeepMind's AlphaGo.