Search results
Results from the WOW.Com Content Network
In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as voltages, voltage angles, real power and reactive power.
The Holomorphic Embedding Load-flow Method (HELM) [note 1] is a solution method for the power-flow equations of electrical power systems. Its main features are that it is direct (that is, non-iterative) and that it mathematically guarantees a consistent selection of the correct operative branch of the multivalued problem, also signalling the condition of voltage collapse when there is no solution.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
algorithm Gauss–Seidel method is inputs: A, b output: φ Choose an initial guess φ to the solution repeat until convergence for i from 1 until n do σ ← 0 for j from 1 until n do if j ≠ i then σ ← σ + a ij φ j end if end (j-loop) φ i ← (b i − σ) / a ii end (i-loop) check if convergence is reached end (repeat)
the Stein-Rosenberg theorem gives us our first comparison theorem for two different iterative methods. Interpreted in a more practical way, not only is the point Gauss-Seidel iterative method computationally more convenient to use (because of storage requirements) than the point Jacobi iterative matrix, but it is also asymptotically faster when ...
The Gauss-Seidel, the Jacobi variants and transmission line modelling, TLM. The names of the first two methods are derived from the structural similarities to the numerical methods by the same name. The reason is that the Jacobi method is easy to convert into an equivalent parallel algorithm while there are difficulties to do so for the Gauss ...
Other notable examples include solving partial differential equations, [1] the Jacobi kernel, the Gauss–Seidel method, [2] image processing [1] and cellular automata. [3] The regular structure of the arrays sets stencil techniques apart from other modeling methods such as the Finite element method.
In linear systems, the two main classes of relaxation methods are stationary iterative methods, and the more general Krylov subspace methods. The Jacobi method is a simple relaxation method. The Gauss–Seidel method is an improvement upon the Jacobi method.