Search results
Results from the WOW.Com Content Network
The problem is uninteresting for K of characteristic 2, since over such fields every sum of squares is a square, and we exclude this case. It is believed that otherwise admissibility is independent of the field of definition. [1]: 137
The number of ways to write a natural number as sum of two squares is given by r 2 (n).It is given explicitly by = (() ())where d 1 (n) is the number of divisors of n which are congruent to 1 modulo 4 and d 3 (n) is the number of divisors of n which are congruent to 3 modulo 4.
For the avoidance of ambiguity, zero will always be a valid possible constituent of "sums of two squares", so for example every square of an integer is trivially expressible as the sum of two squares by setting one of them to be zero. 1. The product of two numbers, each of which is a sum of two squares, is itself a sum of two squares.
The prime decomposition of the number 2450 is given by 2450 = 2 · 5 2 · 7 2. Of the primes occurring in this decomposition, 2, 5, and 7, only 7 is congruent to 3 modulo 4. Its exponent in the decomposition, 2, is even. Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 7 2 + 49 2.
This division sign is also used alone to represent the division operation itself, as for instance as a label on a key of a calculator. The obelus was introduced by Swiss mathematician Johann Rahn in 1659 in Teutsche Algebra. [10]: 211 The ÷ symbol is used to indicate subtraction in some European countries, so its use may be misunderstood. [11]
25 is the sum of the five consecutive single-digit odd natural numbers 1, 3, 5, 7, and 9. 25 is a centered octagonal number, [1] a centered square number, [2] a centered octahedral number, [3] and an automorphic number. [4] 25 percent (%) is equal to 1 / 4 . It is the smallest decimal Friedman number as it can be expressed by its own ...
A result of Albrecht Pfister [8] shows that a positive semidefinite form in n variables can be expressed as a sum of 2 n squares. [9] Dubois showed in 1967 that the answer is negative in general for ordered fields. [10] In this case one can say that a positive polynomial is a sum of weighted squares of rational functions with positive ...
This problem is known as the primitive circle problem, as it involves searching for primitive solutions to the original circle problem. [9] It can be intuitively understood as the question of how many trees within a distance of r are visible in the Euclid's orchard , standing in the origin.