Search results
Results from the WOW.Com Content Network
Fluorescein aqueous solutions, diluted from 10,000 to 1 parts-per-million in intervals of 10 fold dilution. At 1 ppm the solution is a very pale yellow. At 1 ppm the solution is a very pale yellow. As the concentration increases the colour becomes a more vibrant yellow, then orange, with the final 10,000 ppm a deep red colour.
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
1 volume percent = 10,000 ppmv (i.e., parts per million by volume) with a million being defined as 10 6. Care must be taken with the concentrations expressed as ppbv to differentiate between the British billion which is 10 12 and the USA billion which is 10 9 (also referred to as the long scale and short scale billion, respectively).
Seawater has a salinity of roughly 35,000 ppm, equivalent to 35 grams of salt per one liter (or kilogram) of water. The saturation level is only nominally dependent on the temperature of the water. [1] At 20 °C (68 °F) one liter of water can dissolve about 357 grams of salt, a concentration of 26.3 percent by weight (% w/w). At 100 °C (212 ...
0.1 × ( 12 ÷ 8 ) = 0.15 grain per dscf when corrected to a gas having a specified reference CO 2 content of 12 volume %. Notes: Although ppmv and grains per dscf have been used in the above examples, concentrations such as ppbv (i.e., parts per billion by volume), volume percent, grams per dscm and many others may also be used.
The standard liter per minute (SLM or SLPM) is a unit of (molar or) mass flow rate of a gas at standard conditions for temperature and pressure (STP), which is most commonly practiced in the United States, whereas European practice revolves around the normal litre per minute (NLPM). [1]
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [2] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase c {\displaystyle c} : [ 3 ]
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.