enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    In anomaly detection, the local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000 for finding anomalous data points by measuring the local deviation of a given data point with respect to its neighbours.

  3. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    Fig. 2 shows the 1NN classification map: each pixel is classified by 1NN using all the data. Fig. 3 shows the 5NN classification map. White areas correspond to the unclassified regions, where 5NN voting is tied (for example, if there are two green, two red and one blue points among 5 nearest neighbors). Fig. 4 shows the reduced data set.

  4. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    Three broad categories of anomaly detection techniques exist. [1] Supervised anomaly detection techniques require a data set that has been labeled as "normal" and "abnormal" and involves training a classifier. However, this approach is rarely used in anomaly detection due to the general unavailability of labelled data and the inherent ...

  5. Anomaly-based intrusion detection system - Wikipedia

    en.wikipedia.org/wiki/Anomaly-based_intrusion...

    Systems using artificial neural networks have been used to great effect. Another method is to define what normal usage of the system comprises using a strict mathematical model, and flag any deviation from this as an attack. This is known as strict anomaly detection. [3]

  6. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    [8] The related terms data dredging, data fishing, and data snooping refer to the use of data mining methods to sample parts of a larger population data set that are (or may be) too small for reliable statistical inferences to be made about the validity of any patterns discovered. These methods can, however, be used in creating new hypotheses ...

  7. Autoencoder - Wikipedia

    en.wikipedia.org/wiki/Autoencoder

    Autoencoders are applied to many problems, including facial recognition, [5] feature detection, [6] anomaly detection, and learning the meaning of words. [ 7 ] [ 8 ] In terms of data synthesis , autoencoders can also be used to randomly generate new data that is similar to the input (training) data.

  8. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  9. One-class classification - Wikipedia

    en.wikipedia.org/wiki/One-class_classification

    The term one-class classification (OCC) was coined by Moya & Hush (1996) [8] and many applications can be found in scientific literature, for example outlier detection, anomaly detection, novelty detection. A feature of OCC is that it uses only sample points from the assigned class, so that a representative sampling is not strictly required for ...