enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. NACA airfoil - Wikipedia

    en.wikipedia.org/wiki/NACA_airfoil

    TT: the maximum thickness in percent of chord, as in a four-digit NACA airfoil code. For example, the NACA 23112 profile describes an airfoil with design lift coefficient of 0.3 (0.15 × 2), the point of maximum camber located at 15% chord (5 × 3), reflex camber (1), and maximum thickness of 12% of chord length (12).

  3. Airfoil - Wikipedia

    en.wikipedia.org/wiki/Airfoil

    For example, an airfoil of the NACA 4-digit series such as the NACA 2415 (to be read as 2 – 4 – 15) describes an airfoil with a camber of 0.02 chord located at 0.40 chord, with 0.15 chord of maximum thickness. Finally, important concepts used to describe the airfoil's behaviour when moving through a fluid are:

  4. Supercritical airfoil - Wikipedia

    en.wikipedia.org/wiki/Supercritical_airfoil

    Supercritical airfoils feature four main benefits: they have a higher drag-divergence Mach number, [21] they develop shock waves farther aft than traditional airfoils, [22] they greatly reduce shock-induced boundary layer separation, and their geometry allows more efficient wing design (e.g., a thicker wing and/or reduced wing sweep, each of which may allow a lighter wing).

  5. List of aircraft type designators - Wikipedia

    en.wikipedia.org/wiki/List_of_aircraft_type...

    An aircraft type designator is a two-, three- or four-character alphanumeric code designating every aircraft type (and some sub-types) that may appear in flight planning. These codes are defined by both the International Civil Aviation Organization (ICAO) and the International Air Transport Association (IATA).

  6. File:Examples of Airfoils.svg - Wikipedia

    en.wikipedia.org/wiki/File:Examples_of_Airfoils.svg

    English: Selected airfoils in nature and various vehicles, with their approximate chord length indicated. Sources for the shapes of the airfoils: Low-speed ULM wing: drawn over own photo of low-cost, low-speed ultralight; Propeller blade: drawn over own photo of a sliced WW2-era bomber propeller

  7. Talk:NACA airfoil - Wikipedia

    en.wikipedia.org/wiki/Talk:NACA_airfoil

    TT: the usual two-digit maximum camber in percent of chord; Accordingly, the given example “77887” is nonsensical. You simply cannot have a an “8” in the middle position: it _must_ be either “0” or “1”. An 87%-of-chord thickness is also highly dubious: _none_ of the canonical NACA profiles (10 5-digit and 87 4-digit) go beyond 25%.

  8. Clark Y airfoil - Wikipedia

    en.wikipedia.org/wiki/Clark_Y_airfoil

    The profile was designed in 1922 by Virginius E. Clark using thickness distribution of the German-developed Goettingen 398 airfoil. [1] The airfoil has a thickness of 11.7 percent and is flat on the lower surface aft of 30 percent of chord. The flat bottom simplifies angle measurements on propellers, and makes for easy construction of wings.

  9. Supersonic airfoils - Wikipedia

    en.wikipedia.org/wiki/Supersonic_airfoils

    Years of research and experience with the unusual conditions of supersonic flow have led to some interesting conclusions about airfoil design. Considering a rectangular wing, the pressure at a point P with coordinates (x,y) on the wing is defined only by the pressure disturbances originated at points within the upstream Mach cone emanating from point P. [3] As result, the wing tips modify the ...