enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dihybrid cross - Wikipedia

    en.wikipedia.org/wiki/Dihybrid_cross

    In the example pictured to the right, RRYY/rryy parents result in F 1 offspring that are heterozygous for both R and Y (RrYy). [4] This is a dihybrid cross of two heterozygous parents. The traits observed in this cross are the same traits that Mendel was observing for his experiments. This cross results in the expected phenotypic ratio of 9:3:3:1.

  3. Heterozygote advantage - Wikipedia

    en.wikipedia.org/wiki/Heterozygote_advantage

    [2] [3] Overdominance is a rare [4] condition in genetics where the phenotype of the heterozygote lies outside of the phenotypical range of both homozygote parents, and heterozygous individuals have a higher fitness than homozygous individuals.

  4. Test cross - Wikipedia

    en.wikipedia.org/wiki/Test_cross

    When conducting a dihybrid test cross, two dominant phenotypic characteristics are selected and crossed with parents displaying double recessive traits. The phenotypic characteristics of the F1 generation are then analyzed. In such a test cross, if the individual being tested is heterozygous, a phenotypic ratio of 1:1:1:1 is typically observed. [7]

  5. Heterosis - Wikipedia

    en.wikipedia.org/wiki/Heterosis

    If overdominance is the main cause for the fitness advantages of heterosis, then there should be an over-expression of certain genes in the heterozygous offspring compared to the homozygous parents. On the other hand, if dominance is the cause, fewer genes should be under-expressed in the heterozygous offspring compared to the parents.

  6. Zygosity - Wikipedia

    en.wikipedia.org/wiki/Zygosity

    The words homozygous, heterozygous, and hemizygous are used to describe the genotype of a diploid organism at a single locus on the DNA. Homozygous describes a genotype consisting of two identical alleles at a given locus, heterozygous describes a genotype consisting of two different alleles at a locus, hemizygous describes a genotype consisting of only a single copy of a particular gene in an ...

  7. Genotype - Wikipedia

    en.wikipedia.org/wiki/Genotype

    In the example on the right, both parents are heterozygous, with a genotype of Bb. The offspring can inherit a dominant allele from each parent, making them homozygous with a genotype of BB. The offspring can inherit a dominant allele from one parent and a recessive allele from the other parent, making them heterozygous with a genotype of Bb.

  8. Monohybrid cross - Wikipedia

    en.wikipedia.org/wiki/Monohybrid_cross

    Figure 1: Inheritance pattern of dominant (red) and recessive (white) phenotypes when each parent (1) is homozygous for either the dominant or recessive trait. All members of the F 1 generation are heterozygous and share the same dominant phenotype (2), while the F 2 generation exhibits a 6:2 ratio of dominant to recessive phenotypes (3).

  9. Non-Mendelian inheritance - Wikipedia

    en.wikipedia.org/wiki/Non-Mendelian_inheritance

    The size of mice that are heterozygous at this locus depends on the parent from which the wild-type allele came. If the functional allele originated from the mother, the offspring will exhibit dwarfism , whereas a paternal allele will generate a normal-sized mouse.