enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neher–McGrath method - Wikipedia

    en.wikipedia.org/wiki/Neher–McGrath_method

    By estimating the temperature of the cables, the safe long-term current-carrying capacity of the cables can be calculated. J. H. Neher and M. H. McGrath were two electrical engineers who wrote a paper in 1957 about how to calculate the capacity of current (ampacity) of cables. [1]

  3. Economic optimization of electric conductors - Wikipedia

    en.wikipedia.org/wiki/Economic_optimization_of...

    There are several approaches to this which are all based upon these fundamental principles. The following standards cover the economics sizing of cables: IEC 60287-3-2.Electric cables - Calculation of the current rating - Part 3-2. [5] JCS 4521-1 Calculation of the Environmental Current Rating for the Electric Cables, Part 1. [6] AS/NZS 3008.1. ...

  4. American wire gauge - Wikipedia

    en.wikipedia.org/wiki/American_wire_gauge

    (E.g. 1 mm diameter wire is ~18 AWG, 2 mm diameter wire is ~12 AWG, and 4 mm diameter wire is ~6 AWG). This quadruples the cross-sectional area and conductance. A decrease of ten gauge numbers (E.g. from 12 AWG to 2 AWG) multiplies the area and weight by approximately 10, and reduces the electrical resistance (and increases the conductance ) by ...

  5. IEC 60228 - Wikipedia

    en.wikipedia.org/wiki/IEC_60228

    Comparison of SWG (red), AWG (blue) and IEC 60228 (black) wire gauge sizes from 0.03 to 200 mm² to scale on a 1 mm grid – in the SVG file, hover over a size to highlight it. In engineering applications, it is often most convenient to describe a wire in terms of its cross-section area, rather than its diameter, because the cross section is directly proportional to its strength and weight ...

  6. Ampacity - Wikipedia

    en.wikipedia.org/wiki/Ampacity

    For systems such as underground power transmission cables, evaluation of the short-term over-load capacity of the cable system requires a detailed analysis of the cable's thermal environment and an evaluation of the commercial value of the lost service life due to excess temperature rise.

  7. Dynamic line rating for electric utilities - Wikipedia

    en.wikipedia.org/wiki/Dynamic_line_rating_for...

    The current-carrying capacity, or ampacity, of overhead lines starts with the type of conductor used. The conductor choice determines its electrical resistance and other physical parameters for dynamic line rating (DLR).

  8. Power cable - Wikipedia

    en.wikipedia.org/wiki/Power_cable

    A power cable is an electrical cable, an assembly of one or more electrical conductors, usually held together with an overall sheath. The assembly is used for transmission of electrical power . Power cables may be installed as permanent wiring within buildings, buried in the ground, run overhead, or exposed.

  9. Extra-low voltage - Wikipedia

    en.wikipedia.org/wiki/Extra-low_voltage

    The higher current results in greater resistive losses in the cabling. Cable sizing must therefore consider maximum demand, voltage drop over the cable, and current-carrying capacity . Voltage drop is usually the main factor considered, but current-carrying capacity is as important when considering short, high-current runs such as between a ...