Search results
Results from the WOW.Com Content Network
In this example the organic layer is the product, which is a liquid at room temperature. The bottom aqueous layer is removed with a pipette and discarded. The top layer is transferred to an Erlenmeyer flask where it is treated with anhydrous sodium sulfate to remove any remaining water.
The mechanism of the reaction involves two steps. The first step is a nucleophilic addition to the nitrile with the aid of a polarizing Lewis acid, forming an imine, which is later hydrolyzed during the aqueous workup to yield the final aryl ketone. Hoesch reaction mechanism
The McMurry reaction of benzophenone. The McMurry reaction is an organic reaction in which two ketone or aldehyde groups are coupled to form an alkene using a titanium chloride compound such as titanium(III) chloride and a reducing agent.
The Corey–House synthesis (also called the Corey–Posner–Whitesides–House reaction and other permutations) is an organic reaction that involves the reaction of a lithium diorganylcuprate with an organic halide or pseudohalide (′) to form a new alkane, as well as an ill-defined organocopper species and lithium (pseudo)halide as byproducts.
Diels–Alder reaction, simplest example. In organic chemistry, the Diels–Alder reaction is a chemical reaction between a conjugated diene and a substituted alkene, commonly termed the dienophile, to form a substituted cyclohexene derivative. It is the prototypical example of a pericyclic reaction with a concerted mechanism.
For instance, the production of glycolic acid typically follows this method, utilizing a base-induced reaction, followed by acid workup. Similarly, unsaturated acids and fumarate and maleate esters undergo hydration to yield malic acid derivatives from esters, and 3-hydroxypropionic acid from acrylic acid .
Acid–base extraction is a subclass of liquid–liquid extractions and involves the separation of chemical species from other acidic or basic compounds. [1] It is typically performed during the work-up step following a chemical synthesis to purify crude compounds [2] and results in the product being largely free of acidic or basic impurities.
Examples of aldol reactions in biochemistry include the splitting of fructose-1,6-bisphosphate into dihydroxyacetone and glyceraldehyde-3-phosphate in the fourth stage of glycolysis, which is an example of a reverse ("retro") aldol reaction catalyzed by the enzyme aldolase A (also known as fructose-1,6-bisphosphate aldolase).