enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    In his first paper on Markov chains, published in 1906, Markov showed that under certain conditions the average outcomes of the Markov chain would converge to a fixed vector of values, so proving a weak law of large numbers without the independence assumption, [16] [17] [18] which had been commonly regarded as a requirement for such ...

  3. PyMC - Wikipedia

    en.wikipedia.org/wiki/PyMC

    PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. PyMC performs inference based on advanced Markov chain Monte Carlo and/or variational fitting algorithms.

  4. Stochastic matrix - Wikipedia

    en.wikipedia.org/wiki/Stochastic_matrix

    The above elementwise sum across each row i of P may be more concisely written as P1 = 1, where 1 is the α-dimensional column vector of all ones. Using this, it can be seen that the product of two right stochastic matrices P ′ and P ′′ is also right stochastic: P ′ P ′′ 1 = P ′ ( P ′′ 1 ) = P ′ 1 = 1 .

  5. Additive Markov chain - Wikipedia

    en.wikipedia.org/wiki/Additive_Markov_chain

    An additive Markov chain of order m is a sequence of random variables X 1, X 2, X 3, ..., possessing the following property: the probability that a random variable X n has a certain value x n under the condition that the values of all previous variables are fixed depends on the values of m previous variables only (Markov chain of order m), and the influence of previous variables on a generated ...

  6. Iterated function - Wikipedia

    en.wikipedia.org/wiki/Iterated_function

    If the function is linear and can be described by a stochastic matrix, that is, a matrix whose rows or columns sum to one, then the iterated system is known as a Markov chain. Examples [ edit ]

  7. Continuous-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_Markov_chain

    Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.

  8. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    The Markov-modulated Poisson process or MMPP where m Poisson processes are switched between by an underlying continuous-time Markov chain. [8] If each of the m Poisson processes has rate λ i and the modulating continuous-time Markov has m × m transition rate matrix R , then the MAP representation is

  9. Stochastic chains with memory of variable length - Wikipedia

    en.wikipedia.org/wiki/Stochastic_chains_with...

    The class of stochastic chains with memory of variable length was introduced by Jorma Rissanen in the article A universal data compression system. [1] Such class of stochastic chains was popularized in the statistical and probabilistic community by P. Bühlmann and A. J. Wyner in 1999, in the article Variable Length Markov Chains.