Search results
Results from the WOW.Com Content Network
Besides the well-known Pitzer-like equations, there is a simple and easy-to-use semi-empirical model, which is called the three-characteristic-parameter correlation (TCPC) model. It was first proposed by Lin et al. [22] It is a combination of the Pitzer long-range interaction and short-range solvation effect: ln γ = ln γ PDH + ln γ SV
Notable analytical approaches include hydrodynamics, [12] kinetic theory, and non-equilibrium statistical physics. Numerical studies mainly involve self-propelled-particles models, [ 13 ] [ 14 ] making use of agent-based models such as molecular dynamics algorithms or lattice-gas models , [ 15 ] as well as computational studies of hydrodynamic ...
However, when the ionic strength is changed the measured equilibrium constant will also change, so there is a need to estimate individual (single ion) activity coefficients. Debye–Hückel theory provides a means to do this, but it is accurate only at very low concentrations. Hence the need for an extension to Debye–Hückel theory.
A Markov process is called a reversible Markov process or reversible Markov chain if there exists a positive stationary distribution π that satisfies the detailed balance equations [13] =, where P ij is the Markov transition probability from state i to state j, i.e. P ij = P(X t = j | X t − 1 = i), and π i and π j are the equilibrium probabilities of being in states i and j, respectively ...
The Debye–Hückel theory was proposed by Peter Debye and Erich Hückel as a theoretical explanation for departures from ideality in solutions of electrolytes and plasmas. [1] It is a linearized Poisson–Boltzmann model, which assumes an extremely simplified model of electrolyte solution but nevertheless gave accurate predictions of mean activity coefficients for ions in dilute solution.
In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. [1] In an ideal mixture, the microscopic interactions between each pair of chemical species are the same (or macroscopically equivalent, the enthalpy change of solution and volume variation in mixing is zero) and, as a result, properties of the mixtures ...
The Lennard-Jones potential is a simple model that still manages to describe the essential features of interactions between simple atoms and molecules: Two interacting particles repel each other at very close distance, attract each other at moderate distance, and eventually stop interacting at infinite distance, as shown in the Figure.
Donnan potential is the difference in the Galvani potentials [1] which appears as a result of Donnan equilibrium, named after Frederick G. Donnan, which refers to the distribution of ion species between two ionic solutions separated by a semipermeable membrane or boundary. [2]