Search results
Results from the WOW.Com Content Network
SonicParanoid is an algorithm for the de-novo prediction of orthologous genes among multiple species. [1] It borrows the main idea from InParanoid [2] with substantial changes to the algorithm that drastically reduce the time required for the analysis.
Name Description Knots [Note 1]Links References trRosettaRNA: trRosettaRNA is an algorithm for automated prediction of RNA 3D structure. It builds the RNA structure by Rosetta energy minimization, with deep learning restraints from a transformer network (RNAformer). trRosettaRNA has been validated in blind tests, including CASP15 and RNA-Puzzles, which suggests that the automated predictions ...
At prediction time, a voting scheme is applied: all K (K − 1) / 2 classifiers are applied to an unseen sample and the class that got the highest number of "+1" predictions gets predicted by the combined classifier. [2]: 339 Like OvR, OvO suffers from ambiguities in that some regions of its input space may receive the same number of votes.
Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms.
Pandas – High-performance computing (HPC) data structures and data analysis tools for Python in Python and Cython (statsmodels, scikit-learn) Perl Data Language – Scientific computing with Perl; Ploticus – software for generating a variety of graphs from raw data; PSPP – A free software alternative to IBM SPSS Statistics
Multilevel models (also known as hierarchical linear models, linear mixed-effect models, mixed models, nested data models, random coefficient, random-effects models, random parameter models, or split-plot designs) are statistical models of parameters that vary at more than one level. [1]
Neighbourhood components analysis is a supervised learning method for classifying multivariate data into distinct classes according to a given distance metric over the data. . Functionally, it serves the same purposes as the K-nearest neighbors algorithm and makes direct use of a related concept termed stochastic nearest neighbo