Search results
Results from the WOW.Com Content Network
In meiosis, non-sister homologous chromosomes pair with each other so that recombination characteristically occurs between non-sister homologues. In both meiotic and mitotic cells, recombination between homologous chromosomes is a common mechanism used in DNA repair .
Different pairs of chromosomes segregate independently of each other, a process termed “independent assortment of non-homologous chromosomes”. This process results in each gamete usually containing a mixture of chromosomes from both original parents. Improper chromosome segregation (see non-disjunction, disomy) can result in aneuploid ...
Non-homologous end joining can also join two different chromosomes together that had broken ends. The reason non-reciprocal translocations are dangerous is the possibility of producing a dicentric chromosome – a chromosome with two centromeres. When dicentric chromosomes form, a series of events can occur called a breakage-fusion-bridge cycle ...
Usually, all cells in an individual in a given species (plant or animal) show a constant number of chromosomes, which constitute what is known as the karyotype defining this species (see also List of number of chromosomes of various organisms), although some species present a very high karyotypic variability. In humans, mutations that would ...
In general, nondisjunction can occur in any form of cell division that involves ordered distribution of chromosomal material. Higher animals have three distinct forms of such cell divisions: Meiosis I and meiosis II are specialized forms of cell division occurring during generation of gametes (eggs and sperm) for sexual reproduction, mitosis is the form of cell division used by all other cells ...
Polyploidy, or whole genome duplication is a product of nondisjunction during meiosis which results in additional copies of the entire genome. Polyploidy is common in plants, but it has also occurred in animals, with two rounds of whole genome duplication in the vertebrate lineage leading to humans. [4]
We also know that the replication-timing program changes during development, along with changes in the expression of genes. For many decades now, it has been known that replication timing is correlated with the structure of chromosomes. For example, female mammals have two X chromosomes. One of these is genetically active, while the other is ...
Replication of DNA always begins at an origin of replication. In yeast, the origins contain autonomously replicating sequences (ARS), distributed throughout the chromosome about 30 kb from each other. They allow replication of DNA wherever they are placed. Each one is 100-200 bp long, and the A element is one of the most conserved stretches.