enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy, found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases. [19]

  3. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    The matrix determinant lemma performs a rank-1 update to a determinant. Woodbury matrix identity; Quasi-Newton method; Binomial inverse theorem; Bunch–Nielsen–Sorensen formula; Maxwell stress tensor contains an application of the Sherman–Morrison formula.

  4. Matrix determinant lemma - Wikipedia

    en.wikipedia.org/wiki/Matrix_determinant_lemma

    If the determinant and inverse of A are already known, the formula provides a numerically cheap way to compute the determinant of A corrected by the matrix uv T.The computation is relatively cheap because the determinant of A + uv T does not have to be computed from scratch (which in general is expensive).

  5. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    There are various equivalent ways to define the determinant of a square matrix A, i.e. one with the same number of rows and columns: the determinant can be defined via the Leibniz formula, an explicit formula involving sums of products of certain entries of the matrix. The determinant can also be characterized as the unique function depending ...

  6. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    where adj(A) denotes the adjugate matrix, det(A) is the determinant, and I is the identity matrix. If det(A) is nonzero, then the inverse matrix of A is = ⁡ (). This gives a formula for the inverse of A, provided det(A) ≠ 0.

  7. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    In mathematics, specifically linear algebra, the Woodbury matrix identity – named after Max A. Woodbury [1] [2] – says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix.

  8. Vandermonde matrix - Wikipedia

    en.wikipedia.org/wiki/Vandermonde_matrix

    This matrix is thus a change-of-basis matrix of determinant one. ... An explicit formula for the inverse is known (see below). [10] [3] Inverse Vandermonde matrix

  9. Minor (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minor_(linear_algebra)

    In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix generated from A by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which are useful for computing both the determinant and inverse of square matrices.